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Approximate nearest neighbor (ANN) search is a fundamental search inmulti-dimensional databases, which has

numerous real-world applications, such as image retrieval, recommendation, entity resolution, and sequence

matching. Proximity graph (PG) has been the state-of-the-art index for ANN search. However, the search on

existing PGs either suffers from a high time complexity or has no performance guarantee on the search result.

In this paper, we propose a novel 𝜏-monotonic graph (𝜏-MG) to address the limitations. The novelty of 𝜏-MG
lies in a 𝜏-monotonic property. Based on this property, we prove that if the distance between a query 𝑞 and
its nearest neighbor is less than a constant 𝜏 , the search on 𝜏-MG guarantees to find the exact nearest neighbor of
𝑞 and the time complexity of the search is smaller than all existing PG-based methods. For index construction
efficiency, we propose an approximate variant of 𝜏-MG, namely 𝜏-monotonic neighborhood graph (𝜏-MNG),
which only requires the neighborhood of each node to be 𝜏-monotonic. We further propose an optimization to

reduce the number of distance computations in search. Our extensive experiments show that our techniques

outperform all existing methods on well-known real-world datasets.
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1 INTRODUCTION
Approximate nearest neighbor (ANN) search inmulti-dimensional databases is a fundamental search

and has many applications, such as image retrieval [28, 44], recommendation [12], entity resolution

[21], and sequence matching [10]. Many ANN search methods have been proposed, such as the

tree-based methods [33, 41, 52], quantization-based methods [25, 38, 55], hashing-based methods
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Fig. 1. Distance distribution on the SIFT dataset: (a) Histogram of the distances between 1,000 queries and
their nearest neighbors; (b) Distribution of the distances between 10 queries and all data points in the SIFT
dataset

[34, 49, 60], and proximity graph-based methods [17, 31, 36]. Recent studies [6, 31, 32, 36, 40, 48, 53]

show that proxmity graph (PG)-based methods provide superior performance over other methods in
many large-scale applications of ANN search.

Given a database 𝐷 with 𝑛 points in an𝑚-dimensional space, the PG-based methods construct a

proximity graph 𝐺 to index 𝐷 , where each node in 𝐺 corresponds to a point in 𝐷 and two nodes

have an edge if they satisfy some proximity property. For a query point 𝑞, a greedy routing on

𝐺 can be used to find the ANN of 𝑞. Specifically, at each routing step, we compute the distances

between 𝑞 and the neighbors of the current node. Then, we select the neighbor that is the closest to

𝑞 as the next current node and proceed to the next routing step. The routing stops if no neighbor

of the current node is closer to 𝑞 than itself.

Existing PG-based methods mainly lie in either of two following extremes. Let 𝑣 denote the

nearest neighbor of 𝑞 and 𝛿 (𝑞, 𝑣) denote the distance of 𝑣 to 𝑞. At one extreme, some research studies

(e.g., [13, 17, 20]) impose the assumption 𝛿 (𝑞, 𝑣) = 0 (i.e., 𝑞 is a point in 𝐷). For example, MRNG [17]

guarantees to find 𝑣 by the greedy routing and the expected time complexity is 𝑂 (𝑛2/𝑚
ln𝑛) with

probability at least 1 − (1/𝑒)
𝑚
4
(1− 3

𝑒2
)
.
1
However, the assumption 𝛿 (𝑞, 𝑣) = 0 is not always practical

as 𝑞 ∈ 𝐷 may not always hold. At the other extreme, many works (e.g., [16, 29, 32, 36]) study
simply the setting 𝛿 (𝑞, 𝑣) < ∞. However, these works either cannot provide an error guarantee

of the greedy routing (e.g., SSG [16], HNSW [36], DPG [32]) or take 𝑂 (𝑛) time to retrieve the nearest

neighbor 𝑣 (e.g., DG [29]).
In this paper, we study a practical setting 𝛿 (𝑞, 𝑣) < 𝜏 , which falls between the two extremes,

where 𝜏 is a user-defined constant. It is motivated by the observation that in real-world benchmark

datasets, the queries are usually not in 𝐷 but close to their nearest neighbors in 𝐷 . For example, in

our preliminary experiments on the SIFT dataset with 1 million data points, we observe that 𝛿 (𝑞, 𝑣)
is not zero but small when compared with the distances to all points in the dataset. Fig. 1(a) shows

the histogram of 𝛿 (𝑞, 𝑣) for 1,000 randomly selected queries. We can see that 20 < 𝛿 (𝑞, 𝑣) < 270

for most queries. Fig. 1(b) shows the box plot of the distances between ten randomly selected

queries and all the points in SIFT. We can see that 𝑞 is much closer to its nearest neighbor than the

other points in 𝐷 . The only existing work that has considered the setting 𝛿 (𝑞, 𝑣) < 𝜏 is FANNG [20].

FANNG guarantees to find 𝑣 by the greedy routing if 𝛿 (𝑞, 𝑣) < 𝜏 . However, we prove that the greedy

routing of FANNG has a high time complexity. This paper proposes a solution, which has a lower

time complexity, to find the nearest neighbor 𝑣 of 𝑞 when 𝑞 satisfies 𝛿 (𝑞, 𝑣) < 𝜏 .

1
The original expected time complexity proved in [17] is𝑂 ( 1

Δ𝑛
1/𝑚

ln𝑛) , where Δ is the smallest distance between any two

points in 𝐷 . In this paper, we prove that Δ ≤ 𝑂 ( (1/𝑛)1/𝑚) with probability at least 1 − (1/𝑒)
𝑚
4
(1− 3

𝑒2
)
.
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Fig. 2. A comparison of 𝜏-MG with existing methods (𝑣 denotes the nearest neighbor of the query 𝑞, 𝛿 denotes
the Euclidean distance, 𝜏 is a constant, 𝑛 is the number of points in the database,𝑚 is the dimensionality, †
means with probability 1.0, and ‡ means with probability at least 1 − (1/𝑒)

𝑚
4
(1− 3

𝑒2
) )

We analyze the greedy routing and find the key reason for the high time complexity of FANNG is

that each routing step gets closer to 𝑞 by only Δ, where Δ denotes the smallest distance between

any two points in 𝐷 . We show that Δ ≤ 𝑂 ((1/𝑛)1/𝑚) with probability at least 1− (1/𝑒)
𝑚
4
(1− 3

𝑒2
)
. We

further prove that the length of the greedy routing on any PG is 𝑂 (𝑛2/𝑚
ln𝑛) with probability at

least 1 − (1/𝑒)
𝑚
4
(1− 3

𝑒2
)
. This is the first work that can bound the length of the greedy routing in any

PG.

Based on the analysis, we propose a novel proximity graph, namely 𝜏-monotonic graph (𝜏-MG).
The core of 𝜏-MG is a new edge occlusion rule: for two nodes 𝑢 and 𝑣 in 𝜏-MG, if 𝑢 has a neighbor in

the intersection of the ball centered at 𝑢 with radius 𝛿 (𝑢, 𝑣) and the ball centered at 𝑣 with radius

𝛿 (𝑢, 𝑣)−3𝜏 , the edge (𝑢, 𝑣) is not in the 𝜏-MG. This edge occlusion rule makes 𝜏-MG has a 𝜏-monotonic

property: if 𝛿 (𝑞, 𝑣) < 𝜏 , 𝜏-MG has a path from any node to 𝑣 , in which each step monotonically gets

closer to 𝑞 by at least 𝜏 . This property ensures that 𝑣 can be found by the greedy routing. We further

prove that the expected time complexity of the greedy routing is 𝑂 (𝑛1/𝑚 (ln𝑛)2). Fig. 2 shows a
comparison of 𝜏-MG with existing methods. To the best of our knowledge, the ANN search method of
this paper has the smallest time complexity compared with all existing PG-based ANN search methods.
To reduce the time complexity of PG construction, we propose an approximate variant of 𝜏-MG,

called 𝜏-monotonic neighborhood graph (𝜏-MNG). The main idea is that we only require the subgraph

induced by the neighborhood of each node is 𝜏-monotonic. The idea of 𝜏-monotonic neighborhood

is generic and 𝜏-MNG can be constructed from any PG. The time complexity of 𝜏-MNG construction is

𝑂 (𝑛ℎ2
lnℎ), where ℎ is the size of the neighborhood and ℎ is much smaller than 𝑛. Since the greedy

routing on 𝜏-MNG may get stuck in local optima, which reduces search accuracy, a beam search is

used on 𝜏-MNG for ANN search in order to strike a balance between search accuracy and efficiency.

We prove that the probability that the beam search finds 𝑣 is no less than the probability that the

search enters the neighborhood of 𝑣 .

To optimize the beam search on 𝜏-MNG, we propose a query-aware edge occlusion (QEO) method.

The main idea is that if the current node 𝑢 of the search is not in the top 𝑝% of the priority queue

of the beam search, we use a lower bound 𝛿𝑙𝑏 of the distance 𝛿 to order the neighbors of 𝑢 and

prune the tail neighbors. It is based on the observation that the farther the current node 𝑢 away

from 𝑞 is, the higher chance the neighbors of 𝑢 can be pruned. We also identify two important

implementation details for query efficiency.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 54. Publication date: May 2023.
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Contributions. The contributions of this paper are as follows.
• We find the key reason for the long routing of existing PGs is that each routing step gets

closer to 𝑞 by only Δ, where Δ = 𝑂 ((1/𝑛)1/𝑚) with probability at least 1 − (1/𝑒)
𝑚
4
(1− 3

𝑒2
)
;

• We propose a novel PG 𝜏-MG, which guarantees to find the nearest neighbor 𝑣 of 𝑞 by the

greedy search if 𝛿 (𝑞, 𝑣) < 𝜏 . The time complexity of the greedy search is 𝑂 (𝑛1/𝑚 (ln𝑛)2),
which is lower than all existing PG-based methods;

• We propose 𝜏-MNG as an approximate variant of 𝜏-MG. 𝜏-MNG can be efficiently constructed in

𝑂 (ℎ2
lnℎ) time, where ℎ is the neighborhood size, and a beam search on 𝜏-MNG has a high

chance of returning 𝑣 ;

• We propose an optimization to reduce the number of distance computations in the beam

search on 𝜏-MNG; and
• Our extensive experiments verify that our proposed techniques outperform the state-of-the-

art methods on real-world benchmark datasets.

Organizations. The rest of this paper is organized as follows. Section 2 discusses the related work.

The preliminaries are presented in Section 3. Section 4 presents the analysis of the inefficiency of

existing PGs. Section 5 presents 𝜏-MG. 𝜏-MNG is presented in Section 6. The experimental evaluation

is presented in Section 7. Section 8 concludes this paper. For presentation clarity, we put the detailed

proofs in Section 9.

2 RELATEDWORK
In this section, we focus on the ANN works that are closely related to proximity graphs (PGs). PGs

have been studied recently [13, 14, 16, 17, 19, 20, 31, 32, 35]. Most existing PGs are based on three

fundamental graph models: the Delaunay graph, the navigable small world graph, and the relative

neighborhood graph. They are briefly reviewed as follows.

Delaunay graph (DG) is the dual graph of the Voronoi diagram [7]. For any query 𝑞 in the 𝑚-

dimensional Euclidean space 𝐸𝑚 , DG guarantees to find the nearest neighbor of 𝑞 by a greedy

routing [36]. However, when 𝑚 is large, DG becomes a complete graph [20], which makes the

routing time-consuming. To reduce the node degree of DG, 𝑘-nearest neighbor graph (kNNG) is
proposed as an approximation of DG, where each node is connected to its top-𝑘 nearest neighbors.

For example, Jin et al. [26] and Hajebi et al. [19] propose IEH and GNNS using kNNG for ANN search,

respectively. Since constructing kNNG is time-consuming, which takes 𝑂 (𝑛2) time, some research

studies propose to construct the approximate kNNG. In particular, Dong et al. [14] propose a PG,

namely KGraph to approximate kNNG. KGraph initializes the neighbors of each node randomly and

then iteratively improves the neighbors of each node based on the principle that “a neighbor of a

neighbor is likely a neighbor”. Instead of a random initialization, EFANNA [15] first builds KD-trees

on the database and uses ANN search on the KD-trees to initialize the neighbors of each node

before executing NN-Descent. However, KGraph and EFANNA cannot ensure the connectivity of

the constructed graph, which can significantly degrade the accuracy of the search results [17].

Recently, Wen et al. [32] propose DPG that diversifies the neighboring edges of each node. However,

DPG neither reduces the time complexity nor provides an error guarantee for the search results.

Navigable small world graph (NSWG) has attracted much research attention since the well-known

Milgram’s social experiment [39]. Milgram observes that two nodes in a large graph are connected

by a short path and the path can be found by a greedy routing. Many works are proposed to explain

and analyze the performance of NSWG. For example, Watts and Strogatz [54] propose a 2-dimensional

lattice model and prove the existence of a path of the length 𝑂 (ln𝑛) between two nodes in the

lattice. Kleinberg [27] proves that the greedy routing cannot find the path. Kleinberg [27] proposes

another 2-dimensional lattice model that guarantees to find the path of the length 𝑂 (ln𝑛) by the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 54. Publication date: May 2023.
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greedy routing in 𝑂 ((ln𝑛)2) expected time. Martel and Nguyen [37] extend the work of Kleinberg

[27] to support𝑚-dimensional lattice. Inspired by Kleinberg’s model, Malkov et al. [35] propose

a PG (namely NSW) to support approximate ANN search in the𝑚-dimensional Euclidean space.

However, the node degree of NSW is high, which makes the routing costly. NSW does not ensure

connectivity, which affects search accuracy. Recently, Malkov et al. [36] propose a hierarchical

version of NSW (namely HNSW) to ensure connectivity and support routing in polylogarithmic time.

However, the analysis of the time cost lacks rigorous theoretical support. Moreover, HNSW has no
error guarantee on the search results.

Relative neighborhood graph (RNG) eliminates the longest edge in all possible triangles among

the points in the database 𝐷 , i.e., if an edge (𝑢, 𝑣) is in the graph, 𝐷 has no point 𝑢 ′
satisfying

𝛿 (𝑢,𝑢 ′) < 𝛿 (𝑢, 𝑣) and 𝛿 (𝑢 ′, 𝑣) < 𝛿 (𝑢, 𝑣). RNG guarantees the average degree of each node is a small

constant [23]. Later, Dearholt et al. [13] prove that RNG does not have sufficient edges to guarantee

the accuracy of the search results of the greedy routing. Fu et al. [17] propose the monotonic relative

neighborhood graph (MRNG). MRNG ensures that the average degree of each node is a constant and

guarantees to find the nearest neighbor of 𝑞 if 𝑞 ∈ 𝐷 . However, if 𝑞 ∉ 𝐷 , MRNG has no error guarantee
on the search results. FANNG [20] ensures to find the nearest neighbor 𝑣 of 𝑞 if 𝛿 (𝑞, 𝑣) < 𝜏 . However,

FANNG does not provide theoretical analysis on node degree and time complexity of the greedy

routing. Recently, Fu et al. [16] extend MRNG to a satellite system graph (SSG). Although SSG is

designed for any 𝑞 ∉ 𝐷 , SSG has no error guarantee on the search results of the greedy routing.

Several works study improving the routing algorithm on PG. For example, Muñoz et al. [50]

propose to prune the neighbors that are not in the same quadrant as 𝑞 at each routing step.

Baranchuk et al. [9] use a graph neural network to select the neighbor to route to. Peng et al.

[43] use neural networks to prune unpromissing neighbors to reduce the number of distance

computations. Li et al. [31] propose a learning-based method to early stop the routing to avoid

unnecessary routing steps. However, these works have no error guarantee on the search results.

Zhao et al. [59] and Yu et al. [58] propose using GPUs to accelerate the routing on PG. However,

this paper focuses on CPU, which is orthogonal to them.

Non-PG-based methods. There are also some ANN works not based on PGs, such as the tree-

based methods [2, 30, 33, 41, 52], inverted index-based methods [8, 31], the quantization-based

methods [18, 25, 38, 55], and the hashing-based methods [34, 49, 60]. Since recent studies [6, 31, 32,

36, 40, 48, 53] show that these methods are outperformed by PG-based methods, we do not include

these methods in this section. We refer interested readers to excellent surveys (e.g., [22, 32, 38, 48])
for more details.

There have been studies on the meaningfulness of ANN search [11, 30, 47]. With the increasing

of dimensionality, the contrast (i.e., the ratio of the distances between the query 𝑞 and its nearest

and farthest points) tends to 1 and ANN search becomes meaningless, as the NN of 𝑞 could not be

separated from other points. However, if the datasets have a low intrinsic dimensionality or the

distance between the query and its nearest neighbor is no more than a constant, contrast exists

and ANN search is meaningful [11].

3 PRELIMINARIES
In this section, we first present the problem setting and then present the proximity graph.

3.1 Problem setting
In this paper, we use 𝐸𝑚 to denote the𝑚-dimensional Euclidean space. The 𝐿2 norm 𝛿 (𝑢, 𝑣) of two
points 𝑢 and 𝑣 is used to measure the distance between 𝑢 and 𝑣 . The approximate nearest neighbor

(ANN) search is defined as follows.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 54. Publication date: May 2023.
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Algorithm 1 ANN search on proximity graph (beam_search)

Input: PG𝐺 , query 𝑞, beam size 𝑏 ⊲ 𝑏 = 1 means greedy routing

Output: ANN of 𝑞

1: initialize a priority queue𝑊 = ∅ to store candidates

2: 𝑣.explored is false by default for each node 𝑣 in𝐺

3: 𝑣𝑖𝑛𝑖𝑡 = select an initial node in𝐺

4: 𝑊 .add((𝛿 (𝑣𝑖𝑛𝑖𝑡 , 𝑞), 𝑣𝑖𝑛𝑖𝑡 )) ⊲𝑊 is in ascending order of 𝛿

5: while𝑊 has unexplored nodes do
6: 𝑢 = the unexplored node with the smallest distance to 𝑞 in𝑊

7: for each neighbor 𝑣 of 𝑢 in𝐺 do
8: 𝑊 .add(𝛿 (𝑣,𝑞), 𝑣) into𝑊
9: end for
10: 𝑢.explored = true
11: resize𝑊 to size 𝑏 ⊲ keep the 𝑏 nodes with the smallest distances to 𝑞

12: end while
13: return the node in𝑊 that is the closest to 𝑞

ANN search problem. Given a database 𝐷 with 𝑛 data points in 𝐸𝑚 , a query point 𝑞 in 𝐸𝑚 , and

a small constant 𝜖 ≥ 0, we aim to efficiently find a point 𝑝 in 𝐷 such that 𝛿 (𝑝, 𝑞) ≤ (1 + 𝜖)𝛿 (𝑣, 𝑞),
where 𝑣 is the nearest neighbor of 𝑞 in 𝐷 .

For the convenience of modeling and evaluation, the exact value of 𝜖 is usually not used directly,

and instead, other measures are used to measure search accuracy [16, 17, 31, 36, 43, 53]. The widely

used accuracy measures for ANN search include the rank-based measures [16, 17, 53] and the

distance-based measures [32, 42]. The ANN search problem can be naturally generalized to the

approximate 𝑘-nearest neighbor (𝑘-ANN) search problem [16, 17].

In this paper, we use 𝑏𝑎𝑙𝑙 (𝑢, 𝑟 ) to denote an open ball centered at 𝑢 with radius 𝑟 . We use

𝑏𝑎𝑙𝑙 (𝑟 ) if the ball center is not interested. We use 𝑙𝑢𝑛𝑒 (𝑢, 𝑣) to denote the intersection of two balls

𝑏𝑎𝑙𝑙 (𝑢, 𝛿 (𝑢, 𝑣)) and 𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑢, 𝑣)).
3.2 Proximity graph
A proximity graph (PG) of a database 𝐷 is a directed graph 𝐺 , where the nodes in 𝐺 are the points

in 𝐷 and two nodes have an edge if they satisfy some proximity property. For a node 𝑢 of𝐺 , we use

𝑁𝐺 (𝑢) to denote the set of outgoing neighbors of 𝑢 in 𝐺 and 𝑁 −
𝐺
(𝑢) to denote the nodes in 𝐺 but

not in 𝑁𝐺 (𝑢). A path 𝑃 = [𝑢0, 𝑢1, ..., 𝑢 |𝑃 |−1] in a PG is a monotonic path for a query 𝑞 if each step

gets closer to 𝑞, i.e., 𝛿 (𝑢𝑖 , 𝑞) < 𝛿 (𝑢𝑖−1, 𝑞), for 𝑖 = 1, ..., |𝑃 | − 1.

Algorithm 1 presents the search algorithm on a PG, which is a beam search and widely used in

existing works (e.g., [16, 17, 32, 35, 45, 51, 53, 59]). Greedy routing is a special case of Algorithm 1

when 𝑏 = 1. The larger the beam size, the higher the search accuracy but the slower the search.

Algorithm 1 can be easily extended to support 𝑘-ANN search by setting 𝑏 ≥ 𝑘 and returning the

top-𝑘 best nodes in𝑊 in Line 13.

3.2.1 Monotonic relative neighborhood graph. The monotonic relative neighborhood graph (MRNG)
[17] is a well-known PG. The core of MRNG is a rule of using shorter edges to occlude longer edges,

defined as follows. (This edge occlusion rule is also used in other PG-based methods including

NSSG [16], HNSW [36], and FANNG [20].)

Definition 1. (Edge occlusion rule of MRNG) Given three nodes 𝑢, 𝑢 ′, and 𝑣 in𝐺 , if (𝑢,𝑢 ′) ∈ 𝐺 and
𝑢 ′ ∈ 𝑙𝑢𝑛𝑒 (𝑢, 𝑣), then (𝑢, 𝑣) ∉ 𝐺 . Alternatively, we say (𝑢,𝑢 ′) occludes (𝑢, 𝑣).

Fig. 3(a) illustrates that the edge (𝑢,𝑢 ′) occludes the edge (𝑢, 𝑣). Based on the edge occlusion

rule, MRNG is defined as follows.
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𝑢′
𝑢 𝑣
3𝜏

𝑢′

𝑢 𝑣

(a) MRNG (c) 𝜏-MG

𝑢′′

𝑏𝑎𝑙𝑙(𝑣, 𝛿(𝑢, 𝑣))

𝑙𝑢𝑛𝑒(𝑢, 𝑣)

𝑢′

𝑢 𝑣
𝑞

(b) A case of MRNG 
missing the NN of 𝑞

Fig. 3. Illustration of the edge occlusion rules of MRNG and 𝜏-MG. In (a) and (c), the edge (𝑢,𝑢 ′) can occlude
the edge (𝑢, 𝑣). In (c), the edge (𝑢,𝑢 ′′) cannot occlude (𝑢, 𝑣). (b) shows a case where the greedy search misses
the NN of 𝑞 due to the edge occlusion rule of MRNG.

Definition 2. (MRNG) Given a database 𝐷 , a proximity graph𝐺 is an MRNG if𝐺 has an edge (𝑢,𝑢 ′)
occluding the edge (𝑢, 𝑣) for any two nodes 𝑢, 𝑣 ∈ 𝐺 satisfying (𝑢, 𝑣) ∉ 𝐺 .

MRNG has a performance guarantee as follows.

Lemma 1. If 𝑞 ∈ 𝐷 , the greedy search on MRNG finds 𝑞 starting from any node. However, if 𝑞 ∉ 𝐷 ,
the greedy search on MRNG may not find the nearest neighbor of 𝑞.

Fig. 3(b) shows an example where the greedy search on MRNG cannot find the NN of 𝑞. The

edge (𝑢, 𝑣) is occluded by (𝑢,𝑢 ′). Suppose that 𝑢 is the current node of the greedy routing. Since

𝛿 (𝑞,𝑢) < 𝛿 (𝑞,𝑢 ′), the greedy routing will stop and return 𝑢. However, 𝑣 is the NN of 𝑞.

We remark that although MRNG is designed for the Euclidean space [17], MRNG can still be used in

general metric spaces. However, the analysis of MRNG for time and space complexities in [17] does

not hold in general metric spaces.

4 ANALYSIS OF THE INEFFICIENCY OF EXISTING PROXIMITY GRAPHS
In this section, we analyze the reason for the inefficiency of existing PGs. The time cost of ANN

search on a PG is mainly determined by two factors: the routing length (i.e., the number of routing

steps) and the node degree. We focus on the first factor in this section, as in many existing PGs, the

node degree is bounded by a constant [16, 17, 36].
2

Fu et al. [17] analyze the expected length of the greedy routing in the monotonic search network

(MSNET). However, the analysis of Fu et al. has two limitations. First, MSNET is a special PG, which
requires that for each node 𝑣 , the PG has a monotonic path from any node to 𝑣 . Second, 𝑞 has to be

a point in the database. In contrast, we analyze the expected length of the greedy routing in any

PG and 𝑞 can be any point in 𝑅𝑚 . Our result is more general than that of [17].

Theorem 1. Recall the same assumptions from [17] as below.

• Given a database 𝐷 of 𝑛 points, the points in 𝐷 are uniformly distributed in a finite subspace of
𝐸𝑚 and𝑚 is a constant.

• There exists a constant𝜓 , such that𝜓𝑉𝐷 ≥ 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑅)), where 𝑉𝐷 denotes the volume of the
minimum convex hull containing 𝐷 , 𝑅 denotes the maximum distance between two points in 𝐷 ,
and 𝑏𝑎𝑙𝑙 (𝑅) denotes a ball with radius 𝑅.

The point density 𝑔 can increase with the growth of 𝑛 and we assume that 𝑔 is 𝑂 (ln𝑛).3 We further
assume that the query 𝑞 has the same distribution as the points in 𝐷 .

2MRNG [17] and SSG [16] prove their max node degrees are constants. HNSW [36] bounds the node degree by a predefined

constant.

3
It is a relaxation of the assumption in [17], where 𝑔 is assumed to be a constant as 𝑛 increasing.
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For any PG 𝐺 of 𝐷 , the expected length of the greedy routing for 𝑞 is 𝑂 ( 1

Δ𝑛
1

𝑚 ln𝑛
1

𝑚 ), where Δ
denotes the smallest distance between any two points in 𝐷 and Δ ≤ 𝑂 ((1/𝑛)1/𝑚) with probability at
least 1 − ( 1

𝑒
)
𝑚
4
(1− 3

𝑒2
) . Therefore, the expected length of the greedy routing is at least 𝑂 (𝑛 2

𝑚 ln𝑛) with
probability at least 1 − ( 1

𝑒
)
𝑚
4
(1− 3

𝑒2
) .

Proof Sketch. Let [𝑣0, 𝑣1, ..., 𝑣𝑥 ] be the path found by the greedy routing. First, we prove the

expected length of the path E[𝑥] = 𝑂 ( 1

Δ𝑛
1

𝑚 ln𝑛
1

𝑚 ), which follows the framework of [17]. Second,

we prove Δ ≤ 𝑂 (
√
𝑚(𝑚/𝑛)1/𝑚) with probability at least 1 − ( 1

𝑒
)
𝑚
4
(1− 3

𝑒2
)
. The main idea is to

prove that the probability that two points are both in a hypercube with volume 𝑂 (𝑚/𝑛) is at least
1 − ( 1

𝑒
)
𝑚
4
(1− 3

𝑒2
)
. □

In Theorem 1, we can see that the routing is long on any existing PG. The reason is that each

routing step gets closer to 𝑞 by only Δ and Δ → 0 when 𝑛 → ∞.

5 𝜏-MONOTONIC GRAPH (𝜏-MG)
To address the limitation of exising PGs (cf. Section 4), this section proposes 𝜏-monotonic graph

(𝜏-MG). If 𝛿 (𝑞, 𝑣) < 𝜏 , each step of the greedy routing, except the last step, gets closer to 𝑞 by

a constant 𝜏 . Therefore, the expected length of the greedy routing is reduced to be 𝑂 (𝑛 1

𝑚 ln𝑛).
Moreover, if 𝛿 (𝑞, 𝑣) < 𝜏 , the greedy routing on 𝜏-MG must find 𝑣 . 𝜏-MG is designed based on a more

tighter edge occlusion rule as follows.

Definition 3. (Edge occlusion rule of 𝜏-MG) Given three nodes 𝑢, 𝑢 ′, and 𝑣 in 𝐺 , if (𝑢,𝑢 ′) ∈ 𝐺 and
𝑢 ′ is in the intersection of 𝑏𝑎𝑙𝑙 (𝑢, 𝛿 (𝑢, 𝑣)) and 𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑢, 𝑣) − 3𝜏), then (𝑢, 𝑣) ∉ 𝐺 .

Fig. 3(c) illustrates that the edge occlusion rule of 𝜏-MG.

Definition 4. (𝜏-MG) Given a constant 𝜏 ≥ 0, a 𝜏-monotonic graph (𝜏-MG) is a directed proximity
graph 𝐺 = (𝑉 , 𝐸), where for any two nodes 𝑢 and 𝑣 ,

• if 𝛿 (𝑢, 𝑣) ≤ 3𝜏 , (𝑢, 𝑣) ∈ 𝐺 ; and
• if 𝛿 (𝑢, 𝑣) > 3𝜏 and (𝑢, 𝑣) ∉ 𝐺 , 𝐺 has an edge (𝑢,𝑢 ′) occluding the edge (𝑢, 𝑣).

We propose a new concept of 𝜏-monotonic path. A 𝜏-monotonic path ensures getting closer to 𝑞

by at least 𝜏 in each step except the last step.

Definition 5. (𝜏-monotonic path) A path 𝑃 = [𝑣0, 𝑣1, ..., 𝑣𝑥 , 𝑣𝑥+1] on a PG𝐺 is a 𝜏-monotonic path
for a query 𝑞 if 𝛿 (𝑣𝑖+1, 𝑞) < 𝛿 (𝑣𝑖 , 𝑞) − 𝜏 , for 𝑖 = 0, ..., 𝑥 − 1, and 𝛿 (𝑣𝑥+1, 𝑞) < 𝛿 (𝑣𝑥 , 𝑞).

Based on the 𝜏-monotonic path, we define the 𝜏-monotonic property as follows.

Definition 6. (𝜏-monotonic property) Given a database 𝐷 and a constant 𝜏 > 0, a PG𝐺 of 𝐷 is
𝜏-monotonic if for any query 𝑞 satisfying 𝛿 (𝑞, 𝑣) < 𝜏 , 𝐺 has a 𝜏-monotonic path starting from any
node in 𝐺 to the nearest neighbor 𝑣 of 𝑞 in 𝐷 .

Based on the edge occlusion rule (Definition 3), we can prove that if 𝛿 (𝑞, 𝑣) < 𝜏 , 𝜏-MG must have

a 𝜏-monotonic path starting from any node to 𝑣 . Therefore, we have the following lemma.

Lemma 2. A 𝜏-MG of 𝐷 is 𝜏-monotonic.

5.1 Construction of 𝜏-MG
The overall idea of 𝜏-MG construction is that we first construct an MRNG and then insert edges to the

MRNG to obtain a 𝜏-MG. It is because that by the definitions of MRNG and 𝜏-MG, a 𝜏-MG is an MRNG but
an MRNG may lack some edges to satisfy the definition of 𝜏-MG. From the example shown in Fig. 3(c),
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Algorithm 2 Construction of 𝜏-MG

Input: database 𝐷 , parameter 𝜏

Output: 𝜏-MG𝐺 of 𝐷

1: construct an MRNG𝐺0 using the method in [17] and set𝐺 = 𝐺0

2: for each node 𝑢 in𝐺 do
3: 𝐿 is the list of the nodes that are not out-going neighbors of 𝑢

4: sort 𝐿 by the distances to 𝑢 in ascending order

5: for 𝑖 = 0 to |𝐿 | − 1 do
6: 𝑣 = 𝐿 [𝑖 ]
7: if (𝑢, 𝑣) ∈ 𝐺 , continue
8: if 𝛿 (𝑢, 𝑣) ≤ 3𝜏 , insert (𝑢, 𝑣) to𝐺
9: else if �(𝑢,𝑢′) ∈ 𝐺 s.t. 𝑢′ ∈ 𝑏𝑎𝑙𝑙 (𝑢, 𝛿 (𝑢, 𝑣)) ∩ 𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑢, 𝑣) − 3𝜏)
10: insert (𝑢, 𝑣) to𝐺 ⊲ e.g., Fig. 3(c)
11: end for
12: end for
13: return𝐺

if 𝑢 has an outgoing neighbor 𝑢 ′′
in the gray region, (𝑢,𝑢 ′′) can occlude (𝑢, 𝑣) in MRNG, whereas

(𝑢,𝑢 ′′) cannot occlude (𝑢, 𝑣) in 𝜏-MG.
Algorithm 2 shows the construction algorithm of 𝜏-MG. Specifically, Line 1 constructs an MRNG. For

each node 𝑢 in the MRNG, Lines 3-4 sort the list 𝐿 of the nodes that are not outgoing neighbors of 𝑢

in the ascending order of their distances to 𝑢. For the 𝑖-th node 𝑣 of 𝐿, Lines 6-10 check Definition 4

to decide whether (𝑢, 𝑣) needs to be inserted into the 𝜏-MG.
The node degree of 𝜏-MG is analyzed in the following lemma.

Lemma 3. Given a database 𝐷 of 𝑛 points in 𝐸𝑚 and a constant 𝜏 > 0, under the assumptions in
Theorem 1, the expected node degree of the 𝜏-MG 𝐺 constructed by Algorithm 2 is 𝑂 (ln𝑛) and the
expected size of 𝐺 is 𝑂 (𝑛 ln𝑛).

Proof Sketch. The work [17] has proved that the expected node degree of MRNG is a constant.
Hence, we only need to prove that the expected numbers of edges inserted by Line 8 and Line 10

for each node 𝑢 in 𝐺0 are both 𝑂 (ln𝑛).
For Line 8, since the 𝑛 points are uniformly distributed and the density is 𝑔, the number of

edges inserted by Line 8 for 𝑢 is 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑢, 3𝜏)) × 𝑔. Since 𝜏 is a constant and 𝑔 = 𝑂 (ln𝑛),
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑢, 3𝜏)) × 𝑔 is 𝑂 (ln𝑛).

For Line 10, if Line 10 inserts an edge (𝑢, 𝑣), 𝑢 must have a neighbor 𝑢 ′′
in 𝐺0 s.t. 𝑢 ′′

is in

𝑙𝑢𝑛𝑒 (𝑢, 𝑣)\𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑢, 𝑣) − 3𝜏) (see the gray region in Fig. 3(c)). The probability of inserting (𝑢, 𝑣)
is 𝑃𝑟 (𝑢, 𝑣) = 𝑉𝑜𝑙 (𝑙𝑢𝑛𝑒 (𝑢, 𝑣)\𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑢, 𝑣) − 3𝜏))/𝑉𝑜𝑙 (𝑙𝑢𝑛𝑒 (𝑢, 𝑣)) as the points are uniformly dis-

tributed. The expected number of edges inserted by Line 10 is

∑
𝑣∈𝑁 −

𝐺
0

(𝑢) 𝑃𝑟 (𝑢, 𝑣). By applying

arithmetic derivation and geometry theorems, we can derive

∑
𝑣∈𝑁 −

𝐺
0

(𝑢) 𝑃𝑟 (𝑢, 𝑣)) = 𝑂 (ln𝑛). □

The time complexity for 𝜏-MG construction is analyzed as below.

Lemma 4. Given a database 𝐷 of 𝑛 points, the time complexity for 𝜏-MG construction (Algorithm 2)
is 𝑂 (𝑛2

ln𝑛).

The time complexity of constructing 𝜏-MG is the same as that of MRNG, FANNG, and SSG.

5.2 ANN search on 𝜏-MG
In this subsection, we propose a new greedy routing algorithm on 𝜏-MG. The novelty is that each

routing step can get closer to 𝑞 by at least 𝜏 , except the last step, such that the expected routing

length is 𝑂 (𝑛 1

𝑚 ln𝑛).
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Algorithm 3 ANN search on 𝜏-MG

Input: 𝜏-MG𝐺 , query 𝑞

Output: ANN of 𝑞

1: select a node 𝑢 in𝐺 as the start of searching

2: while true do
3: 𝑢′

= arg min𝑣∈𝑁𝐺 (𝑢)∧𝑣∉𝑏𝑎𝑙𝑙 (𝑢,3𝜏 ) 𝛿 (𝑞, 𝑣)
4: if 𝛿 (𝑞,𝑢′) > 𝛿 (𝑞,𝑢) then
5: return arg min𝑣∈𝑁𝐺 (𝑢)∧𝑣∈𝑏𝑎𝑙𝑙 (𝑢,3𝜏 ) 𝛿 (𝑞, 𝑣)
6: end if
7: 𝑢 = 𝑢′

8: end while

The main idea of the greedy routing algorithm is that let 𝑢 be the current node of the routing. We

first try to route to 𝑢’s neighbors out of 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏). If all the neighbors out of 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏) are farther
from 𝑞 than 𝑢, the routing stops and we scan 𝑢’s neighbors in 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏) to find the search result.

Algorithm 3 presents the detailed routing algorithm on 𝜏-MG. Importantly, the greedy routing is

designed based on the following property of 𝜏-MG.

Lemma 5. Given a 𝜏-MG𝐺 and a query 𝑞 satisfying 𝛿 (𝑞, 𝑣) < 𝜏 , let𝑢 be any node in𝐺 , if all outgoing
neighbors of 𝑢 out of 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏) are farther from 𝑞 than 𝑢, then 𝑣 is in 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏).

We analyze the length of the routing path on 𝜏-MG as follows.

Theorem 2. Given a database 𝐷 of 𝑛 points in 𝐸𝑚 , under the same assumptions as in Theorem 1,
for a query 𝑞 satisfing 𝛿 (𝑞, 𝑣) < 𝜏 , where 𝜏 > 0 is a constant and 𝑣 is the nearest neighbor of 𝑞 in 𝐷 ,
the expected length of the routing of Algorithm 3 starting from any node of 𝐺 to 𝑣 is 𝑂 (𝑛 1

𝑚 ln𝑛) and
the time complexity of Algorithm 3 is 𝑂 (𝑛 1

𝑚 (ln𝑛)2).

Proof Sketch. Let [𝑣0, 𝑣1, ..., 𝑣𝑥 ] be the path found by Algorithm 3. Since 𝛿 (𝑞, 𝑣) < 𝜏 , we can

prove E[𝑥] ≤ E[ln𝛿 (𝑞,𝑣𝑥 ) ]−ln(𝑅+𝜏)
ln𝑅−ln(𝑅+𝜏) , where 𝑅 is the largest distance between any two points in 𝐷 .

Since the points are uniformly distributed, we can prove
E[ln𝛿 (𝑞,𝑣𝑥 ) ]−ln(𝑅+𝜏)

ln𝑅−ln(𝑅+𝜏) ≤ 𝑂
( − ln(𝑟 (𝑛)+𝜏)

ln 𝑟 (𝑛)−ln(𝑟 (𝑛)+𝜏)
)
,

where 𝑟 (𝑛) = ( 𝑛
𝐶
)1/𝑚

and𝐶 is a constant. Further, we prove that
− ln(𝑟 (𝑛)+𝜏)

ln 𝑟 (𝑛)−ln(𝑟 (𝑛)+𝜏) has the same order

of growth rate with
(𝑟 (𝑛)+𝜏) ln(𝑟 (𝑛)+𝜏)

𝜏
. Hence, E[𝑥] ≤ 𝑂 ( (𝑟 (𝑛)+𝜏) ln(𝑟 (𝑛)+𝜏)

𝜏
). Since 𝜏 is a constant,

E[𝑥] ≤ 𝑂 (𝑛 1

𝑚 (ln𝑛)). Because the expected node degree is 𝑂 (ln𝑛) as proved in Lemma 3, the time

complexity of Algorithm 3 is 𝑂 (𝑛 1

𝑚 (ln𝑛)2).

5.3 Update of 𝜏-MG
To support updates, we need to reconstruct the 𝜏-MG𝐺 periodically. To optimize update cost, we

reconstruct 𝐺 after 𝑂 (ln𝑛) updates. Our idea is as follows.
If a node 𝑢 is inserted to 𝐺 , we first compute the distances from 𝑢 to all nodes in 𝐺 . Second,

we compute the out-going neighbors of 𝑢 using Lines 3-11 of Algorithm 2. Third, we update the

out-going neighbors of all nodes in 𝐺 . Specifically, for each node 𝑣 in 𝐺 , if no existing out-going

edge of 𝑣 can occlude the edge (𝑣,𝑢), (𝑣,𝑢) is inserted into 𝐺 . The time complexity of insertion is

𝑂 (𝑛 ln𝑛).
If a node 𝑢 is deleted from𝐺 , we adopt the masking strategy [56] to preserve the connectivity of

𝐺 . Specifically, 𝑢 is not deleted from 𝐺 ; 𝑢 can be used in routing; but 𝑢 is not returned as a query

result. The time complexity of deletion is 𝑂 (1).
The graph𝐺 after updates is still a 𝜏-MG by Definition 4. Therefore, Algorithm 3 can find 𝑣 on the

updated 𝐺 if 𝛿 (𝑞, 𝑣) < 𝜏 . However, a node in the updated 𝐺 can have more than 𝑂 (ln𝑛) out-going
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Algorithm 4 Construction of 𝜏-MNG

Input: database 𝐷 , parameter 𝜏 , neighborhood size ℎ, beam size 𝑏

Output: 𝜏-MNG𝐺 of 𝐷

1: construct a PG𝐺0 for 𝐷 ⊲ e.g., NSG [17] or HNSW [36]

2: set𝐺 = (𝐷, ∅) ⊲ edge set is empty

3: for each 𝑢 in𝐺 do
4: randomly select a node 𝑣0 in𝐺0

5: 𝐻𝑢 = beam_search(𝐺0,𝑢, 𝑣0, 𝑏, ℎ) ⊲ approx. ℎ-NNs of 𝑢

6: sort the nodes in 𝐻𝑢 by the ascending order of their distances to 𝑢

7: for 𝑖 = 0 to ℎ − 1 do
8: 𝑣 = 𝐻𝑢 [𝑖 ]
9: if (𝑢, 𝑣) ∈ 𝐺 , continue
10: if 𝛿 (𝑢, 𝑣) ≤ 3𝜏 , insert (𝑢, 𝑣) to𝐺
11: if �(𝑢,𝑢′) ∈ 𝐺 s.t. 𝑢′ ∈ 𝑏𝑎𝑙𝑙 (𝑢, 𝛿 (𝑢, 𝑣)) ∩ 𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑢, 𝑣) − 3𝜏) then
12: insert (𝑢, 𝑣) to𝐺
13: end if
14: end for
15: end for
16: return𝐺

neighbors. To retain the same space complexity of 𝜏-MG and time complexity for searching, we

reconstruct 𝐺 after 𝑂 (ln𝑛) updates.
As a remark, we can still use 𝜏-MG to find the exact NN 𝑣 for a query 𝑞 in general metric spaces

if the distance between 𝑞 and 𝑣 is less than 𝜏 . However, it is open whether the time and space

complexities of 𝜏-MG proposed in this section hold under this setting.

6 𝜏-MONOTONIC NEIGHBORHOOD GRAPH (𝜏-MNG)
Since constructing a 𝜏-MG takes 𝑂 (𝑛2

ln𝑛) time, this section proposes an approximation of 𝜏-MG,
namely 𝜏-monotonic neighborhood graph (𝜏-MNG), such that 𝜏-MNG can be constructed efficiently

and the search on 𝜏-MNG has a high probability of finding 𝑣 .

The main idea of 𝜏-MNG is that we only require the neighborhood of each node in a 𝜏-MNG to

be 𝜏-monotonic, where the neighborhood of a node 𝑢 is the subgraph of 𝐺 induced by the near

neighbors of 𝑢. It is motivated by the recent observation that most routing steps in a proximity

graph 𝐺 are in the neighborhood of the nearest neighbor of 𝑞 [46, 51]. 𝜏-MNG is defined as follows.

Definition 7. Given a database 𝐷 and a constant 𝜏 > 0, let 𝐻𝑣 ⊂ 𝐷 denote the approximate
ℎ-nearest neighbors of a point 𝑣 ∈ 𝐷 , a 𝜏-monotonic neighborhood graph (𝜏-MNG) is a directed graph
𝐺 = (𝑉 , 𝐸), where for any two nodes 𝑣 ∈ 𝐺 and 𝑢 ∈ 𝐻𝑣

• if 𝛿 (𝑢, 𝑣) ≤ 3𝜏 , (𝑢, 𝑣) ∈ 𝐺 ; and
• if 𝛿 (𝑢, 𝑣) > 3𝜏 and (𝑢, 𝑣) ∉ 𝐺 , 𝐺 has an edge (𝑢,𝑢 ′), 𝑢 ′ ∈ 𝐻𝑣 , occluding the edge (𝑢, 𝑣).

6.1 Construction of 𝜏-MNG
Algorithm 4 presents the construction algorithm of 𝜏-MNG. Line 1 constructs a PG, e.g., NSG [17] and
HNSW [36]. Then, for each node 𝑢, Lines 4-5 find the list 𝐻𝑢 of the approximate ℎ-NNs of 𝑢. Line 6

sorts the nodes in 𝐻𝑢 by their distances to 𝑢. Then, for each node 𝑣 in 𝐻𝑢 , if (𝑢, 𝑣) ∉ 𝐺 , we insert

(𝑢, 𝑣) based on Definition 4. The time complexity of Algorithm 4 is analyzed in Lemma 6.

Lemma 6. Given a database 𝐷 of 𝑛 points in 𝐸𝑚 , a constant 𝜏 > 0 and constants ℎ and 𝑏, under the
assumptions in Theorem 1, the time complexity to construct a 𝜏-MNG by Algorithm 4 is 𝑂 (𝑛 2+𝑚

𝑚 ln𝑛)
with probability at least 1 − (1/𝑒)

𝑚
4
(1− 3

𝑒2
) .
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𝑢!𝑞

𝑊[𝑏 − 1]𝑢"

𝑢" 𝑢!… … …𝑊:

𝑏

Fig. 4. Illustration of query-aware edge occluding (𝑢1 and 𝑢2 are two nodes in𝑊 ;𝑊 [𝑏 − 1] is the last node in
𝑊 ; and solid lines denote edges in PG)

By comparing Lemma 6with Lemma 4, we can see that the time complexity for 𝜏-MNG construction
is much lower than that for 𝜏-MG construction.

6.2 ANN search on 𝜏-MNG
One may attempt to directly use Algorithm 3 on 𝜏-MNG for ANN search. However, 𝜏-MNG may

not have a monotonic path from any node to 𝑣 . Therefore, Algorithm 3 on 𝜏-MNG may get stuck

in local optima, which reduces search accuracy. To alleviate this problem, we adopt the widely

used beam search Algorithm 1 to strike a balance between search accuracy and efficiency. In this

subsection, we first analyze the theoretical performance of the beam search on 𝜏-MNG. Then, we
propose three optimizations to address the performance bottlenecks of the beam search discovered

in our experiments.

The accuracy of the result of the beam search depends on if the beam search enters the neigh-

borhood 𝐻𝑣 of 𝑣 . We call the beam search enters 𝐻𝑣 if any node in 𝐻𝑣 is added into the priority

queue𝑊 in Algorithm 1.

Lemma 7. Given a 𝜏-MNG 𝐺 of 𝐷 and a constant 𝜏 > 0, for a query 𝑞 satisfying 𝛿 (𝑞, 𝑣) < 𝜏 , let 𝐻𝑣

be the approximate ℎ-NNs of 𝑞 and 𝑢 be the node in 𝐻𝑣 that is the farthest from 𝑞, if the beam size
is larger than ℎ + ℎ′, where ℎ is the neighborhood size and ℎ′ is the number of nodes in 𝐺 closer to
𝑞 than 𝑢, the probability that Algorithm 1 finds 𝑣 is no smaller than the probability that the beam
search enters 𝐻𝑣 .

The value of ℎ′
depends on 𝑞. While there is no definite expression of ℎ′

, in practice, we can

easily use a query workload to determine the optimal value of ℎ′
w.r.t the accuracy. For example, as

observed in our experiments, ℎ′
can be tuned to obtain a recall higher than 0.95. This empirical

result is consistent with those from the existing works [46, 51] that the beam search empirically

has a high chance to enter the neighborhood 𝐻𝑣 of 𝑣 .

6.2.1 Optimization for the search algorithm. We propose a query-aware edge occluding method

(QEO) to reduce the number of distance computations in the beam search on 𝜏-MNG.
Line 8 of Algorithm 1 compares the distance between 𝑞 and each neighbor 𝑣 of the current

node 𝑢 with the (𝑏 − 1)-th node in𝑊 . If 𝛿 (𝑞, 𝑣) > 𝛿 (𝑞,𝑊 [𝑏 − 1]), 𝑣 is pruned. In our preliminary

experiments, we observe that the farther the current node 𝑢 from 𝑞, the higher probability that

the neighbors of 𝑢 can be pruned by the (𝑏 − 1)-th node in𝑊 . The intuition is that assume the

neighbors of 𝑢 are uniformly distributed in 𝑏𝑎𝑙𝑙𝑢 centered at 𝑢 with radius max𝑣∈𝑁𝐺 (𝑢) 𝛿 (𝑢, 𝑣). The
intersection of 𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞,𝑊 [𝑏 − 1])) and 𝑏𝑎𝑙𝑙𝑢 reduces with the growth of the distance between 𝑞

and𝑢. Fig. 4 illustrates the intuition.𝑢1 is close to 𝑞 and the entire 𝑏𝑎𝑙𝑙𝑢1
is in 𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞,𝑊 [𝑏−1])),

i.e., all neighbors of 𝑢1 cannot be pruned by𝑊 [𝑏 − 1]. 𝑢2 is far from 𝑞 and 𝑏𝑎𝑙𝑙𝑢2
is partially in

𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞,𝑊 [𝑏 − 1])), i.e., some neighbors of 𝑢2 can be pruned by𝑊 [𝑏 − 1].
Based on this observation, we propose a query-aware edge occluding method. Specifically, if the

current node 𝑢 is not in the top 𝑝% of𝑊 , for all neighbors of 𝑢, we compute a lower bound 𝛿𝑙𝑏 of
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their distances to 𝑞 and sort the neighbors by 𝛿𝑙𝑏 . Then, we compute 𝛿 for the top 𝑝 ′
% neighbors

and add them into𝑊 ; the remaining (1 − 𝑝 ′)% neighbors are pruned. If 𝑢 is in the top 𝑝% of𝑊 , we

compute 𝛿 for all neighbors of 𝑢 and add them into𝑊 .

𝛿𝑙𝑏 of a node 𝑣 and 𝑞 is defined as 𝛿𝑙𝑏 (𝑣, 𝑞) =
√∑𝑧

𝑖=0
(𝑣 [𝑖] − 𝑞 [𝑖])2

, where 𝑣 [𝑖] and 𝑞 [𝑖] denote the
𝑖-th dimensions of 𝑣 and 𝑞, respectively, and 0 < 𝑧 < 𝑚. To improve the tightness of 𝛿𝑙𝑏 (𝑣, 𝑞), we
perform an orthogonal transformation to 𝑣 and𝑞, such that the beginning dimensions of 𝑣 and𝑞 have

more percentage of their Euclidean distance. Specifically, 𝛿𝑙𝑏 (𝑣, 𝑞) =
√∑𝑧

𝑖=0
((𝑈𝑣) [𝑖] − (𝑈𝑞) [𝑖])2

,

where𝑈 is an𝑚 by𝑚 orthogonal matrix and can be computed by the singular value decomposition

(SVD) of 𝐷 .𝑈𝑣 can be computed offline for any 𝑣 ∈ 𝐷 .

6.2.2 Implementation details. We discuss two important implementation details for search effi-

ciency.

Partial distance-based pruning (PDP). During the beam search, for a neighbor 𝑣 of the current

node𝑢, as long as we can decide 𝛿 (𝑞, 𝑣) > 𝛿 (𝑞,𝑊 [𝑏−1]), we can prune 𝑣 without exactly computing

𝛿 (𝑞, 𝑣). It can save many computation costs and motivates a partial distance-based pruning method.

Specifically, in the𝑚 iterations for computing the sum

∑𝑚
𝑖=0

(𝑣 [𝑖]−𝑞 [𝑖])2
, if we find

∑𝑗

𝑖=0
(𝑣 [𝑖]−𝑞 [𝑖])2

at the 𝑗-th iteration is already larger than (𝛿 (𝑞,𝑊 [𝑏 − 1]))2
, we can simply prune 𝑣 .

Prefix inner product index (PII). The computation of 𝛿 (𝑞, 𝑣) can be reformulated as ⟨𝑞, 𝑞⟩ +
⟨𝑣, 𝑣⟩ − 2 ×∑𝑚

𝑖=0
(𝑣 [𝑖] × 𝑞 [𝑖]), where ⟨·, ·⟩ denotes the inner product. ⟨𝑣, 𝑣⟩ can be computed offline.

We only need to compute ⟨𝑞, 𝑞⟩ and 𝑣 [𝑖] × 𝑞 [𝑖] online. Since computing 𝑣 [𝑖] × 𝑞 [𝑖] only needs

half operations of computing (𝑣 [𝑖] − 𝑞 [𝑖])2
and the cost of computing ⟨𝑞, 𝑞⟩ can be shared by all

distance computations in search, approximately half of the total cost of distance computations can

be saved. To integrate with the partial distance-based pruning, we divide the vector 𝑣 into segments

and index the inner products for the prefix segments. Specifically, given a segment size parameter 𝑠 ,

we index inner products ⟨𝑣 [0, 𝑖 × 𝑠], 𝑣 [0, 𝑖 × 𝑠]⟩, 0 < 𝑖 < ⌈𝑚/𝑠⌉. We perform partial distance-based

pruning segment by segment.

6.3 Update of 𝜏-MNG
Similar to Section 5.3, we propose to reconstruct the 𝜏-MNG 𝐺 periodically after 𝑂 (ln𝑛) updates.
For insertion, we simply adopt the strategy of HNSW. Specifically, we use a beam search on𝐺 to find

the ℎ-ANNs 𝐻𝑢 of the node 𝑢 to-be-inserted. Then, the edge occlusion rule (Definition 3) is used to

find the edges between 𝑢 and the nodes in 𝐻𝑢 . For deletion, the method in Section 5.3 is used.

7 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our proposed techniques. The experiments verify

that our method outperforms five current state-of-the-art methods on well-known real-world

datasets.

Datasets and query workloads.We conduct the experiments on eight real-world datasets, which

are widely used for ANN search [16, 17, 32, 36, 53]. The datasets cover a wide range of applications,

including image (SIFT [3], BIGANN [3], DEEP [32], DEEP1B [57], and GIST [3]), text (GLOVE [24]

and CRAWL [5]), and audio (MSONG [4]). Table 1 summarizes some characteristics of the datasets,

including the dimensionality, the number of data points (# base), the local intrinsic dimensionality

(LID) [1], and the data type. We can observe that the LIDs of the datasets are low. DEEP1B and

BIGANN are used in the experiment against dataset size. Following [17, 32, 53], we also use synthetic

datasets RAND and GAUSS. RAND is uniformly sampled from the hypercube [0, 1]100
. GAUSS is

generated by randomly choosing 10 cluster centers in the hypercube [0, 10]100
, and each cluster

follows the Gaussian distribution on each dimension. The query workloads of the real-world and

synthetic datasets are given in the datasets and sampled from the datasets, respectively.
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Table 1. Statistics of datasets

Dataset 𝑚 # base # query LID Type Dataset 𝑚 # base # query LID Type

GloVe 100 1.18M 10K 20.0 Text SIFT 128 1M 10K 9.3 Image

DEEP 256 1M 200 12.1 Image CRAWL 300 1.98M 10K 15.7 Text

MSONG 420 0.99M 200 9.5 Audio GIST 960 1M 1K 18.9 Image

DEEP1B 96 1B 10K 11.9 Image BIGANN 128 1B 10K 9.3 Image

Baseline methods. We compare our method with five current state-of-the-art methods NSG [17],

NSSG [16], HNSW [16], DPG [32], and FANNG [20]. NSG and its extension NSSG are the latest RNG-based
methods. HNSW is the latest NSWG-based method. DPG is the latest kNNG-based method. FANNG is also

an RNG-based method but is the only existing method considering 𝛿 (𝑞, 𝑣) < 𝜏 . The source codes

of NSG, NSSG, DPG, and HNSW are obtained online. We implement FANNG, as its source code is not
published. The code of 𝜏-MNG is built on top of the code of NSG.
Metrics. The performance metrics follow the previous works [16, 17, 20, 36, 42, 53]. Specifically,

we use the recall at 𝑘 (𝑟𝑒𝑐𝑎𝑙𝑙@𝑘) and the relative distance error (𝑟𝑑𝑒𝑟𝑟 ) to measure search accuracy.

For a query 𝑞, 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 = |𝑘𝐴𝑁𝑁𝑠 ∩𝑘𝑁𝑁𝑠 |/𝑘 , where 𝑘𝐴𝑁𝑁𝑠 is the set of the approximate 𝑘-NNs

and 𝑘𝑁𝑁𝑠 is the set of the exact 𝑘-NNs; 𝑟𝑑𝑒𝑟𝑟 = 𝑎𝑣𝑔𝑘−1

𝑖=0
(𝛿 (𝑞, 𝑖𝑡ℎ𝐴𝑁𝑁 )/𝛿 (𝑞, 𝑖𝑡ℎ𝑁𝑁 ) − 1), where

𝑖𝑡ℎ𝐴𝑁𝑁 and 𝑖𝑡ℎ𝑁𝑁 are the 𝑖-th approximate NN and exact NN of 𝑞, respectively. We report the

average 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 and 𝑟𝑑𝑒𝑟𝑟 of all queries in the workloads. Following [16, 17, 36, 45, 53, 59], we use

queries per second (QPS) and number of distance computations (NDC) to measure search efficiency.

QPS is the number of queries finished in a second and NDC is the number of distance computations

to evaluate a query. We focus on search performance in the high recall region.

Experimental settings. The experiments are conducted using C++ on a server with a Quad-Core

AMD Opteron CPU and 800G RAM. The codes are compiled by g++ 8.5. Following [17, 32, 53], we

evaluate the algorithms with a single thread. The larger the size 𝑏, the higher the recall, but the

higher the query latency. Following recent works [31, 32, 53], we increase 𝑏 until the target recall

is achieved. We focus on 𝑘 = 100 in the experiments.

7.1 Comparision with the baseline methods
In this experiment, we compare our method with five baseline methods on six datasets. For a fair

comparison, we integrate our optimization QEO and two implementation details PDP and PII into
all the baseline methods. The results are shown in Fig. 5.

From Fig. 5, we can observe that 𝜏-MNG outperforms all the baseline methods. In particular, on

DEEP, SIFT, MSONG, GIST, CRAWL, and GLOVE, when 𝑟𝑒𝑐𝑎𝑙𝑙@100 is 0.95, 𝜏-MNG is ∼1.1 to ∼1.6,
∼1.2 to ∼2.1, ∼1.1 to ∼1.6, ∼1.1 to ∼1.5, ∼1.2 to ∼2.0, and ∼1.2 to ∼4.1 times faster than the baseline

methods, respectively; when 𝑟𝑑𝑒𝑟𝑟 is 0.001, 𝜏-MNG is ∼1.7 to ∼5.2, ∼1.2 to ∼2.0, ∼1.2 to ∼1.8, ∼1.2 to
∼1.7, ∼1.3 to ∼3.3, and ∼1.4 to ∼5.1 times faster than the baseline methods, respectively.

7.2 Effect of 𝜏
In this experiment, we study the performance of 𝜏-MNG by varying 𝜏 . To clearly examine the effect

of 𝜏 , QEO, PDP, and PII are not used.

Fig. 6 shows the results on the six real-world datasets. From Fig. 6, we observe that the perfor-

mance of 𝜏-MNG first improves and then deteriorates with the growth of 𝜏 . The reason is that the

search cost is dominated by the NDC in the search and the expected NDC is bounded by the product

of the expected number of search steps and the expected node degree of the PG. If 𝜏 increases, the

node degree of 𝜏-MNG grows and the connectivity of 𝜏-MNG is better. The search involves less detour,

which reduces NDC. However, if 𝜏 increases further, the node degree becomes too large and the

search has to compute distances for more neighbors at each search step, which results in a large
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(a) DEEP (QPS vs 𝑟𝑒𝑐𝑎𝑙𝑙)
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(b) SIFT (QPS vs 𝑟𝑒𝑐𝑎𝑙𝑙)

0

2

4

6

8

10

0.92 0.94 0.96 0.98 1

Q
P
S

 x
1
0
0

recall at 100

NSG
NSSG
HNSW

DPG
FANNG
τ-MNG

(c) MSONG (QPS vs 𝑟𝑒𝑐𝑎𝑙𝑙)
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(d) GIST (QPS vs 𝑟𝑒𝑐𝑎𝑙𝑙)
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(e) CRAWL (QPS vs 𝑟𝑒𝑐𝑎𝑙𝑙)
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(f) GLOVE (QPS vs 𝑟𝑒𝑐𝑎𝑙𝑙)
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(g) DEEP (NDC vs 𝑟𝑑𝑒𝑟𝑟 )
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(h) SIFT (NDC vs 𝑟𝑑𝑒𝑟𝑟 )
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(i) MSONG (NDC vs 𝑟𝑑𝑒𝑟𝑟 )
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(j) GIST (NDC vs 𝑟𝑑𝑒𝑟𝑟 )
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(k) CRAWL (NDC vs 𝑟𝑑𝑒𝑟𝑟 )
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(l) GLOVE (NDC vs 𝑟𝑑𝑒𝑟𝑟 )

Fig. 5. Comparison with existing 𝑘-ANN search methods

NDC. Since the results of NDC vs 𝑟𝑑𝑒𝑟𝑟 are consistent with the results of QPS vs 𝑟𝑒𝑐𝑎𝑙𝑙 , we simply

present the results of QPS vs 𝑟𝑒𝑐𝑎𝑙𝑙 in following experiments due to space limitations.

We further conduct experiments on synthetic datasets GAUSS and RAND with different point

densities and deviations to study the behavior of 𝜏-MNG. Fig. 7 shows the results. In Figs. 7(a)-(c), we

fix the standard deviation (SD) of GAUSS to be 5. In Fig. 7(d), we tune the value of SD.

From Figs. 7(a)-(c), we first observe that 𝑘-ANN search on GAUSS is faster than RAND. A reason

is that the search on RAND has more steps than GAUSS. For example, on the datasets with 10K

points, to achieve 𝑟𝑒𝑐𝑎𝑙𝑙@100 = 0.95, the number of search steps on 0-MNG of RAND is ∼400 and
that on 0-MNG of GAUSS is ∼90. Second, we observe that the effect of 𝜏 is more noticeable on

GAUSS than RAND. A reason is that the edges among the 𝑘-NNs of 𝑞 have a higher chance to be

occluded on RAND than GAUSS. Therefore, the decrease of the number of search steps on GAUSS

is faster than RAND as 𝜏 increasing. For example, on the datasets with 10K points, to achieve

𝑟𝑒𝑐𝑎𝑙𝑙@100 = 0.95, the number of search steps on 0.2-MNG of RAND is ∼300 and that on 8-MNG of
GAUSS is ∼50. Third, we observe that the value of 𝜏 , which changes the performance trend of

𝜏-MNG from an improving trend to a deteriorating one, reduces with the growth of point density. A
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Fig. 6. Effect of 𝜏

reason is that on dense datasets, the growth of 𝜏-MNG’s node degree by increasing 𝜏 is faster than

the decrease of the number of search steps.

Fig. 7(d) shows the speedup (spd) of 𝜏-MNG on GAUSS with different standard derivations. spd

is defined as the QPS of 𝜏-MNG over the QPS of 0-MNG, when 𝑟𝑒𝑐𝑎𝑙𝑙@100 = 0.95. We observe that

the performance of 𝜏-MNG first improves and then deteriorates with the growth of 𝜏 for each SD

value, but the value of 𝜏 , which changes the trend from an improving trend to a deteriorating one,

first increases and then decreases with the growth of SD. A reason is that the edge length in 𝜏-MNG
first increases and then decreases with the growth of SD. For example, the average edge lengths of

0-MNG’s are ∼36, ∼59, ∼82, and ∼12 for GAUSS with SD 3, 5, 7, and 10, respectively.

7.3 Performance of QEO
In this experiment, we vary 𝑝 to study the performance of the query-aware edge occlusion (QEO).
𝑝 ′

% and 𝑧 are set to be 2 and𝑚/2, respectively. To focus on QEO, the partial distance-based pruning

and the prefix inner product index techniques are not used in this experiment. Fig. 8 shows the

results from the six datasets.
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Fig. 7. Effect of 𝜏 with respect to different point distributions
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Fig. 8. Performance of QEO

Fig. 8 shows that the search performance first increases and then reduces (Fig. 8(b) and 8(d)-8(f))

or remains stable (Fig. 8(a) and 8(c)) with the reduction of 𝑝 . The reason is that with the reduction

of 𝑝 , the search occludes more unpromising neighbors at each search step, which reduces NDC.

However, if 𝑝 reduces further, more promising neighbors are occluded and the search has to detour

more, which increases NDC.

7.4 Performance of PDP and PII

This experiment evaluates the performance of PDP and PII discussed in Section 6.2.2. For space

limitations, we just present the results on SIFT in Fig. 9 and the trends on other datasets are similar.

From Fig. 9, we can observe that PDP improves the search efficiency. The reason is that at each

search step, many neighbors of the current node can be pruned by the (𝑏−1)-th node in the priority

queue without fully computing their distances from 𝑞. In particular, when the recall is 0.95, the
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Fig. 11. Performance against dataset size

QPS of 𝜏-MNG + QEO + PDP is 1.2 times larger than the QPS of 𝜏-MNG + QEO on SIFT. Fig. 9 further

shows that the search throughput is greatly improved by PII. In particular, when the recall is 0.95,

the QPS of 𝜏-MNG + QEO + PDP + PII is 2.1 times larger than the QPS of 𝜏-MNG + QEO on SIFT.

7.5 Comparison of index size
We examine the index size in this experiment. Fig. 10 shows the results. From Fig. 10, we can

observe that 𝜏-MNG with and without PII are only slightly larger than NSG, NSSG, and HNSW, which
are the top three baseline methods as compared in Fig. 5. 𝜏-MNG with and without PII are much

smaller than FANNG, especially on CRAWL, DEEP, and GLOVE. Therefore, 𝜏-MNG can be comfortably

stored in main memory.

7.6 Performance against dataset size
In this experiment, we evaluate the performance of 𝜏-MNG against dataset size on DEEP1B and

BIGANN. Following the approach of [16, 17, 43, 53] for supporting large datasets, we randomly

separate the data points into parts of 10 millions of points. A 𝜏-MNG is built for each part. We perform

𝑘-ANN search on each part and return the top-𝑘 among the results of all parts as the final results.

Fig. 11 shows the performance, where the x-axis is the dataset size and the y-axis is the average

running time of a query. We observe that the query time of 𝜏-MNG increases linearly with the growth

of dataset size. From Fig. 11, we can also observe that the gap between the plots of recall 0.90 and

0.95 is smaller than the gap between the plots of recall 0.95 and recall 0.98. It is consistent with

the observations in previous experiments that the growth of running time is more than a linear

function of the growth of recall.

8 CONCLUSION
In this paper, we propose a 𝜏-monotonic graph (𝜏-MG) for the approximate nearest neighbor search

in multi-dimensional databases. The core of 𝜏-MG is a novel edge occlusion rule. When the distance

from 𝑞 to its nearest neighbor in the database is less than a constant 𝜏 , the greedy routing on 𝜏-MG
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guarantees to find the exact nearest neighbor of 𝑞 and the expected time complexity of the search

is smaller than all existing methods. The expected length of the greedy routing in 𝜏-MG and the

expected node degree of 𝜏-MG have been rigorously analyzed and presented in the supplementary

materials. For the efficiency of index construction, we propose a 𝜏-monotonic neighborhood graph

(𝜏-MNG), which is an approximate variant of 𝜏-MG. We further propose an optimization to reduce the

number of distance computations in the search on 𝜏-MNG. Our extensive experiments show that

our method is effective and outperforms the state-of-the-art ANN search methods on real-world

benchmark datasets.

In the future, we plan to incorporate distributed and external-memory ANN search methods into

our proposed techniques.

9 SUPPLEMENTARY MATERIALS
To enhance the presentation flow of the paper, we present the detailed proofs in this section.

9.1 Proof of Theorem 1
Proof. Since the greedy routing finds a monotonic path for 𝑞 in 𝐺 , we prove this theorem by

analyzing the expected length of the path. Let 𝑃 = [𝑣0, 𝑣1, ..., 𝑣𝑥 ], 𝑥 ≥ 0, denote the monotonic path

for 𝑞. Note that 𝑣𝑥 may not be the nearest neighbor of 𝑞. We can build a sequence of concentric balls:

𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣0)), ..., 𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣𝑥 )). Let [𝑞,𝑖 =
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞,𝛿 (𝑞,𝑣𝑖+1)))
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞,𝛿 (𝑞,𝑣𝑖 ))) , 𝑖 = 0, ..., 𝑥 − 1. We have [𝑞,𝑖 =( 𝛿 (𝑞,𝑣𝑖+1)

𝛿 (𝑞,𝑣𝑖 )
)𝑚

, 𝑖 = 0, ..., 𝑥 − 1. Let Δ𝑞 = min𝑣,𝑣′∈𝐷 |𝛿 (𝑞, 𝑣) − 𝛿 (𝑞, 𝑣 ′) |. We have Δ𝑞 ≤ 𝛿 (𝑞, 𝑣𝑖 ) − 𝛿 (𝑞, 𝑣𝑖+1),
𝑖 = 0, ..., 𝑥 − 1. Let 𝑅𝑞 = max𝑣∈𝐷 𝛿 (𝑞, 𝑣). We have

[𝑞,𝑖 ≤
(𝛿 (𝑞, 𝑣𝑖 ) − Δ𝑞

𝛿 (𝑞, 𝑣𝑖 )

)𝑚
=

(
1 −

Δ𝑞

𝛿 (𝑞, 𝑣𝑖 )

)𝑚
≤

(
1 −

Δ𝑞

𝑅𝑞

)𝑚
=

(𝑅𝑞 − Δ𝑞

𝑅𝑞

)𝑚
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣𝑥 ))) = 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣0)))[𝑞,0[𝑞,1 ...[𝑞,𝑥−1 ≤ 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝑅𝑞))

((𝑅𝑞 − Δ𝑞

𝑅𝑞

)𝑚)𝑥
It follows that

𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣𝑥 )))
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝑅𝑞))

≤
((𝑅𝑞 − Δ𝑞

𝑅𝑞

)𝑚)𝑥
(1)

We perform logarithm operation on both sides of (1) and let [̂𝑞 = ( 𝑅𝑞−Δ𝑞

𝑅𝑞
)𝑚 be the base of the

logarithm. Since [̂𝑞 < 1, we have

𝑥 ≤ log[̂𝑞

𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣𝑥 )))
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝑅𝑞))

= log[̂𝑞

(𝛿 (𝑞, 𝑣𝑥 )
𝑅𝑞

)𝑚
=𝑚 log[̂𝑞

𝛿 (𝑞, 𝑣𝑥 )
𝑅𝑞

The expectation of 𝑥 over all possible 𝑞 is E[𝑥] ≤ 𝑚E[log[̂𝑞

𝛿 (𝑞,𝑣𝑥 )
𝑅𝑞

].
Let 𝑅 = max𝑢,𝑣∈𝐷 𝛿 (𝑢, 𝑣), Δ = min𝑢,𝑣,𝑤∈𝐷 |𝛿 (𝑢, 𝑣) − 𝛿 (𝑢,𝑤) |, and [̂ = ( 𝑅−Δ

𝑅
)𝑚 . Recall the assump-

tion that 𝑞 follows the same distribution with the points in 𝐷 . Therefore, when 𝑛 → ∞,

E
[

log[̂𝑞

𝛿 (𝑞, 𝑣𝑥 )
𝑅𝑞

]
→ E

[
log[̂

𝛿 (𝑞, 𝑣𝑥 )
𝑅

]
Since𝑚 is a constant,𝑚E[log[̂𝑞

𝛿 (𝑞,𝑣𝑥 )
𝑅𝑞

] →𝑚E[log[̂
𝛿 (𝑞,𝑣𝑥 )

𝑅
]. Therefore, E[𝑥] ≤ 𝑚E[log[̂

𝛿 (𝑞,𝑣𝑥 )
𝑅

].

Since the work [17] has proved that 𝑚E[log[̂
𝛿 (𝑞,𝑣𝑥 )

𝑅
] ≤ lnE[𝛿 (𝑞,𝑣𝑥 ) ]−ln(𝑛/𝐶)1/𝑚

ln( (𝑛/𝐶)1/𝑚−Δ)−ln(𝑛/𝐶)1/𝑚 , where 𝐶 is a

constant, we have

E[𝑥] ≤ lnE[𝛿 (𝑞, 𝑣𝑥 )] − ln(𝑛/𝐶)1/𝑚

ln((𝑛/𝐶)1/𝑚 − Δ) − ln(𝑛/𝐶)1/𝑚 (2)
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Since the left side of (2) is non-zero, the right side of (2) is non-zero. Since the denominator

of the right side of (2) is negative, the numerator of the right side of (2) is not positive. Since

𝛿 (𝑞, 𝑣𝑥 ) ≥ 𝛿 (𝑞, 𝑣), we have

E[𝑥] ≤ lnE[𝛿 (𝑞, 𝑣)] − ln(𝑛/𝐶)1/𝑚

ln((𝑛/𝐶)1/𝑚 − Δ) − ln(𝑛/𝐶)1/𝑚 (3)

Since 𝑞 follows the same distribution with the points in 𝐷 , E[𝛿 (𝑞, 𝑣)] over all possible 𝑞 equals

to E[𝛿 (𝑢, 𝑣 ′)] overall possible 𝑢, where 𝑢 is a point in 𝐷 and 𝑣 ′ is the nearest neighbor of 𝑢 in

𝐷 . Since the points are uniformly distributed and the point density 𝑔 is 𝑂 (ln𝑛), we consider a
hypercube centered at 𝑢 with volume 2/𝑔. 𝑣 ′ is in the hypercube in the expected case. Since 𝑣 ′ is
uniformly distributed in the hypercube, E[𝛿 (𝑢, 𝑣 ′)] ≥ 1

2
( 2

𝑔
)1/𝑚 ≥ 1

2
( 2

ln𝑛
)1/𝑚

. Since E[𝑥] ≥ 0 and

the denominator of (3) is negative, the numerator of (3) is negative. Therefore,

E[𝑥] ≤ 𝑂 ( − ln(𝑛/𝐶)1/𝑚

ln((𝑛/𝐶)1/𝑚 − Δ) − ln(𝑛/𝐶)1/𝑚 ) (4)

According to [17], the right side of (4) is 𝑂 ( 1

Δ𝑛
1

𝑚 ln𝑛
1

𝑚 ). Hence,

E[𝑥] = 𝑂 ( 1

Δ
𝑛

1

𝑚 ln𝑛
1

𝑚 ) (5)

Next, we prove Δ ≤ 𝑂 (
√
𝑚(𝑚/𝑛)1/𝑚) with probability at least 1 − ( 1

𝑒
)
𝑚
4
(1− 3

𝑒2
)
. Recall that the

points are uniformly distributed with density 𝑔. We evenly split the whole space into hypercubes

with volume 2/𝑔. We call these hypercubes (2/𝑔)-volume hypercubes. The expected number of

points in each (2/𝑔)-volume hypercube is two. The number of (2/𝑔)-volume hypercubes is
𝑉𝐷

2/𝑔 .

Based on the assumption that the 𝑛 points are uniformly distributed in space, we have 𝑉𝐷 = 𝑛/𝑔.
Therefore, the number of (2/𝑔)-volume hypercubes is

𝑛/𝑔
2/𝑔 = 𝑛/2. Since the expected number of

points in a (2/𝑔)-volume hypercube is two, there must be some (2/𝑔)-volume hypercubes having

at least two points, whose count is calculated as follows.

Let 𝑐𝑢𝑏𝑒 be a randomly selected (2/𝑔)-volume hypercube. Let 𝑃𝑟0 and 𝑃𝑟1 be the probabilities

that 𝑐𝑢𝑏𝑒 has 0 and 1 point, respectively.

𝑃𝑟0 =

(𝑛/2 − 1

𝑛/2

)𝑛
, 𝑃𝑟1 =

𝑛 × (𝑛/2 − 1)𝑛−1

(𝑛/2)𝑛 =
𝑛

𝑛/2 − 1

(𝑛/2 − 1

𝑛/2

)𝑛
The limitations of 𝑃𝑟0 and 𝑃𝑟1 when 𝑛 → ∞ are as below.

lim

𝑛→∞
𝑃𝑟0 = lim

𝑛→∞

((
1 − 1

𝑛/2

)𝑛/2
)

2

=
( 1

𝑒

)
2

lim

𝑛→∞
𝑃𝑟1 =

(
lim

𝑛→∞
𝑛

𝑛/2 − 1

)
×
(

lim

𝑛→∞

(𝑛/2 − 1

𝑛/2

)𝑛)
= 2

( 1

𝑒

)
2

Let 𝑃𝑟≥2 denote the probability that 𝑐𝑢𝑏𝑒 has two or more points. 𝑃𝑟≥2 = 1 − 𝑃𝑟0 − 𝑃𝑟1, and

lim𝑛→∞ 𝑃𝑟≥2 = 1 − 3/𝑒2
. Since the total number of (2/𝑔)-volume hypercubes is 𝑛/2, the number of

(2/𝑔)-hypercubes having at least two points is
𝑛
2
𝑃𝑟≥2.

To tightly upper bound the smallest distance between any two points, we further split each (2/𝑔)-
volume hypercube into hypercubes with volume𝑚/𝑛𝑔, which are called (𝑚/𝑛𝑔)-volume hypercubes.

The number of (𝑚/𝑛𝑔)-volume hypercubes in a (2/𝑔)-volume hypercube is
2/𝑔

𝑚/𝑛𝑔 = 2𝑛/𝑚. Since𝑚

is a constant,
2𝑛
𝑚

> 1.
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Let us consider a (2/𝑔)-volume hypercube 𝑐𝑢𝑏𝑒0 having at least two points. If 𝑐𝑢𝑏𝑒0 has two

points, since the two points are uniformly distributed in 𝑐𝑢𝑏𝑒0, the probability that the two points

are both in a (𝑚/𝑛𝑔)-volume hypercube is
2𝑛/𝑚

(2𝑛/𝑚)2
= 𝑚/2𝑛. If 𝑐𝑢𝑏𝑒0 has more than two points,

the probability that 𝑐𝑢𝑏𝑒0 has one (𝑚/𝑛𝑔)-volume hypercube holding two points is more than

2𝑛/𝑚
(2𝑛/𝑚)2

=𝑚/2𝑛. Therefore, the probability that 𝑐𝑢𝑏𝑒0 has one (𝑚/𝑛𝑔)-volume hypercube holding

two points is at least
2𝑛/𝑚

(2𝑛/𝑚)2
=𝑚/2𝑛.

Each (2/𝑔)-volume hypercube with at least two points is regarded as a random experiment and

𝑚/2𝑛 is the probability of success in a random experiment. By the Bernoulli’s distribution, the

probability of having at least one successful experiment in
𝑛
2
𝑃𝑟≥2 experiments is 1 − (1 − 𝑚

2𝑛
) 𝑛

2
𝑃𝑟≥2

.

We compute the limitation as follows.

lim

𝑛→∞
1 −

(
1 − 𝑚

2𝑛

) 𝑛
2
𝑃𝑟≥2

= 1 − lim

𝑛→∞

(
1 − 𝑚

2𝑛

) 𝑛
2
𝑃𝑟≥2

Since it is not obvious to compute lim𝑛→∞ (1 − 𝑚
2𝑛
) 𝑛

2
𝑃𝑟≥2

, we compute lim𝑛→∞ ln(1 − 𝑚
2𝑛
) 𝑛

2
𝑃𝑟≥2

as

follows.

lim

𝑛→∞
ln

(
1 − 𝑚

2𝑛

) 𝑛
2
𝑃𝑟≥2

= lim

𝑛→∞
𝑃𝑟≥2 ln

(
1 − 𝑚

2𝑛

) 𝑛
2

= lim

𝑛→∞
𝑃𝑟≥2 lim

𝑛→∞
ln

(
1 − 𝑚

2𝑛

) 𝑛
2

=

(
1 − 3

𝑒2

)
lim

𝑛→∞
ln

(
1 − 1

2𝑛/𝑚

) 𝑛
2

=

(
1 − 3

𝑒2

)
lim

𝑛→∞
ln

((
1 − 1

2𝑛
𝑚

) 2𝑛
𝑚
)𝑚

4

=

(
1 − 3

𝑒2

)
ln

(
1

𝑒

)𝑚
4

= ln

(
1

𝑒

)𝑚
4
(1− 3

𝑒2
)

Therefore, lim𝑛→∞ 1 − (1 − 𝑚
2𝑛
) 𝑛

2
𝑃𝑟≥2 = 1 − ( 1

𝑒
)
𝑚
4
(1− 3

𝑒2
)
.

Since the longest possible distance between any two points in a (𝑚/𝑛𝑔)-volume hypercube is√
𝑚(𝑚

𝑛𝑔
)1/𝑚

, we have Δ ≤
√
𝑚(𝑚

𝑛𝑔
)1/𝑚

. Since the density 𝑔 increases with 𝑛, 𝑔 must be larger than a

constant, say 𝑔0. Therefore,

Δ ≤
√
𝑚

(𝑚
𝑛𝑔

)
1/𝑚

≤
√
𝑚

( 𝑚

𝑛𝑔0

)
1/𝑚

= 𝑂 (
√
𝑚(𝑚/𝑛)1/𝑚) (6)

Since 𝑚 is a constant, combining (5) and (6) produces that E[𝑥] ≥ 𝑂 ( 1√
𝑚𝑚1/𝑚𝑛

2

𝑚 ln𝑛
1

𝑚 ) =

𝑂 (𝑛 2

𝑚 ln𝑛) with probability at least 1 − ( 1

𝑒
)
𝑚
4
(1− 3

𝑒2
)
. □

9.2 Proof of Lemma 2
Proof. If the edge (𝑣0, 𝑣) ∈ 𝐺 , it is trivial as 𝑃 = [𝑣0, 𝑣] is a 𝜏-monotonic path for 𝑞. If (𝑣0, 𝑣) ∉ 𝐺 ,

we prove 𝐺 has a 𝜏-monotonic path for 𝑞 by a case analysis.

Case i): If 𝛿 (𝑣0, 𝑣) ≤ 6𝜏 , 𝐺 must have a 𝜏-monotonic path [𝑣0, 𝑣1, 𝑣] for 𝑞. The reason is as follows.

Since 𝐺 is a 𝜏-MG, 𝑣0 must have an outgoing neighbor 𝑣1 in 𝑏𝑎𝑙𝑙 (𝑣0, 𝛿 (𝑣0, 𝑣)) ∩ 𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑣0, 𝑣) − 3𝜏).
Since 𝛿 (𝑣1, 𝑣) ≤ 3𝜏 , (𝑣1, 𝑣) ∈ 𝐺 and 𝐺 must have a path [𝑣0, 𝑣1, 𝑣]. Since 𝑞 is in 𝑏𝑎𝑙𝑙 (𝑣, 𝜏), 𝛿 (𝑞, 𝑣1) <
𝛿 (𝑣0, 𝑣) − 3𝜏 + 𝜏 = 𝛿 (𝑣0, 𝑣) − 2𝜏 . Since 𝛿 (𝑞, 𝑣0) > 𝛿 (𝑣0, 𝑣) − 𝜏 , 𝛿 (𝑞, 𝑣1) < 𝛿 (𝑞, 𝑣0) − 𝜏 . Therefore,

[𝑣0, 𝑣1, 𝑣] is a 𝜏-monotonic path for 𝑞.

Case ii): If 𝛿 (𝑣0, 𝑣) > 6𝜏 , 𝐺 must have a 𝜏-monotonic path [𝑣0, 𝑣1, ..., 𝑣𝑖 , 𝑣𝑖+1, 𝑣] for 𝑞 such that
𝛿 (𝑣𝑖 , 𝑣) ≤ 6𝜏 . The reason is as follows. Since 𝐺 is a 𝜏-MG, 𝑣0 must have an outgoing neighbor 𝑣1

satisfying 𝛿 (𝑣1, 𝑣) < 𝛿 (𝑣0, 𝑣) − 3𝜏 and 𝛿 (𝑞, 𝑣1) < 𝛿 (𝑞, 𝑣0) − 𝜏 . Similarly, 𝑣1 must have an outgoing

neighbor 𝑣2 satisfying 𝛿 (𝑣2, 𝑣) < 𝛿 (𝑣1, 𝑣) − 3𝜏 and 𝛿 (𝑞, 𝑣2) < 𝛿 (𝑞, 𝑣1) − 𝜏 . In this way, each step gets

closer to 𝑣 by at least 3𝜏 and gets closer to 𝑞 by at least 𝜏 . The search must reach a node 𝑣𝑖 satisfying

𝛿 (𝑣𝑖 , 𝑣) < 6𝜏 . Since 𝐺 must have a 𝜏-monotonic path [𝑣𝑖 , 𝑣𝑖+1, 𝑣] for 𝑞, which has been proved in

Case i), [𝑣0, 𝑣1, ..., 𝑣𝑖 , 𝑣𝑖+1, 𝑣] is a 𝜏-monotonic path for 𝑞. □
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9.3 Proof of Lemma 3
Proof. Since the maximum node degree of the MRNG 𝐺0 is a constant that is independent of 𝑛

[17], we only need to compute the expected numbers of edges inserted for each node 𝑢 by Line 8

and Line 10 of Algorithm 2 are both 𝑂 (ln𝑛).
First, we prove that the expected number of edges inserted by Line 8 for a node𝑢 is𝑂 (ln𝑛). Since

Line 8 links 𝑢 to all points of 𝐷 in 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏), the expected number of edges inserted for 𝑢 by Line 8

is the expected number of points of 𝐷 in 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏). Since the points are uniformly distributed

in the space and the density of the points is 𝑔, the expected number of points in 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏) is
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑢, 3𝜏)) × 𝑔 = 𝑂 (ln𝑛) as 𝜏 is a constant and 𝑔 is 𝑂 (ln𝑛).

Then, we prove that the expected number of edges inserted for 𝑢 by Line 10 is 𝑂 (ln𝑛). Consider
a node 𝑣 , which is not an outgoing neighbor of 𝑢 in the MRNG constructed in Line 1 of Algo-

rithm 2. By the definition of MRNG, 𝑢 must have at least a neighbor 𝑢 ′
in 𝑙𝑢𝑛𝑒 (𝑢, 𝑣). If Line 10

inserts (𝑢, 𝑣), 𝑢 ′
must be in the gray region of 𝑙𝑢𝑛𝑒 (𝑢, 𝑣) in Fig. 3(c). The volume of the gray

region is 𝑉𝑜𝑙 (𝑙𝑢𝑛𝑒 (𝑢, 𝑣)\𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑢, 𝑣) − 3𝜏)). The probability of inserting (𝑢, 𝑣) is 𝑃𝑟 (𝑢, 𝑣) =
𝑉𝑜𝑙 (𝑙𝑢𝑛𝑒 (𝑢,𝑣)\𝑏𝑎𝑙𝑙 (𝑣,𝛿 (𝑢,𝑣)−3𝜏))

𝑉𝑜𝑙 (𝑙𝑢𝑛𝑒 (𝑢,𝑣)) , due to the uniform distribution.

Suppose the line 𝑢𝑣 intersects with 𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑢, 𝑣) − 3𝜏) at a point𝑤 , where𝑤 is not necessarily

a point in 𝐷 .

𝑃𝑟 (𝑢, 𝑣) < 𝑉𝑜𝑙 (𝑙𝑢𝑛𝑒 (𝑢, 𝑣)) −𝑉𝑜𝑙 (𝑙𝑢𝑛𝑒 (𝑤, 𝑣))
𝑉𝑜𝑙 (𝑙𝑢𝑛𝑒 (𝑢, 𝑣)) =

𝛿 (𝑢, 𝑣)𝑚 − (𝛿 (𝑢, 𝑣) − 3𝜏)𝑚
𝛿 (𝑢, 𝑣)𝑚 = 1 −

(
1 − 3𝜏

𝛿 (𝑢, 𝑣)

)𝑚
The expected number of inserted edges for 𝑢 by Line 10 is

𝐴 =
∑

𝑣∈𝑁 −
𝐺

0

(𝑢)

(
1 −

(
1 − 3𝜏

𝛿 (𝑢, 𝑣)

)𝑚)
Since 𝛿 (𝑢, 𝑣) > 3𝜏 , 0 < 3𝜏

𝛿 (𝑢,𝑣) < 1. By Bernoulli’s inequality, (1 − 3𝜏
𝛿 (𝑢,𝑣) )

𝑚 ≥ 1 − 𝑚3𝜏
𝛿 (𝑢,𝑣) . Therefore,

𝐴 ≤ ∑
𝑣∈𝑁 −

𝐺
0

(𝑢)
𝑚3𝜏
𝛿 (𝑢,𝑣) =𝑚3𝜏

∑
𝑣∈𝑁 −

𝐺
0

(𝑢)
1

𝛿 (𝑢,𝑣) .

Suppose 𝛿 (𝑢, 𝑣) follows some continuous distribution. By the property of continuous distributions,

for any two nodes 𝑣1, 𝑣2 ∈ 𝑁 −
𝐺0

(𝑢) and 𝑣1 ≠ 𝑣2, 𝛿 (𝑢, 𝑣1) ≠ 𝛿 (𝑢, 𝑣2). Recall that 𝑅 denotes the largest

distance between any two points in 𝐷 . We have the following.

𝐴 ≤ 𝑚3𝜏
∑

𝑣∈𝑁 −
𝐺

0

(𝑢)

1

𝛿 (𝑢, 𝑣) ≤ 𝑚3𝜏

∫ 𝑅

3𝜏

1

𝑥
𝑑𝑥 ≤ 𝑚3𝜏 (ln𝑅 − ln 3𝜏)

Since𝑚 and 𝜏 are constants and independent of 𝑛, we have 𝐴 = 𝑂 (ln𝑅). Since the points in 𝐷

are uniformly distributed in the space and the density of the points is 𝑔, we have 𝑔 ·𝑉𝐷 = 𝑛. Since

there exists a constant 𝜓 s.t. 𝜓𝑉𝐷 ≥ 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑅)), 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑅)) ≤ 𝜓𝑉𝐷 = 𝜓 𝑛
𝑔
. Since 𝑔 increases

with 𝑛, 𝑔 must be larger than a constant, say 𝑔0. Therefore, 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑅)) ≤ 𝜓 𝑛
𝑔
≤ 𝜓 𝑛

𝑔0

.

By the definition of the volume of ball, 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑅)) = 𝜋𝑚/2𝑅𝑚

Γ (1+𝑚/2) . Let 𝑏 = 𝜋𝑚/2

Γ (1+𝑚/2) . We have

𝑏 · 𝑅𝑚 ≤ 𝜓 𝑛
𝑔0

and 𝑅 ≤ ( 𝜓𝑛
𝑔0𝑏

)1/𝑚
.

Since𝑚, 𝑔0, 𝑏, and𝜓 are constants and independent of 𝑛, we have 𝐴 = 𝑂 (ln𝑛 1

𝑚 ) = 𝑂 (ln𝑛). The
proof is finished. □

9.4 Proof of Lemma 5
Proof. It can be established by proof of contradiction. Assume 𝑣 ∉ 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏). By Definition 4,

𝑣 is a neighbor of 𝑢 or 𝑢 has a neighbor 𝑢 ′
in 𝑏𝑎𝑙𝑙 (𝑢, 𝛿 (𝑢, 𝑣)) ∩ 𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑢, 𝑣) − 3𝜏).
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If 𝑣 is a neighbor of 𝑢, it contradicts with the fact that as all the neighbors of 𝑢 out of 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏)
are farther away from 𝑞 than 𝑢.

If 𝑢 has a neighbor 𝑢 ′
in the intersection of 𝑏𝑎𝑙𝑙 (𝑢, 𝛿 (𝑢, 𝑣)) and 𝑏𝑎𝑙𝑙 (𝑣, 𝛿 (𝑢, 𝑣) − 3𝜏), we have

𝛿 (𝑞,𝑢 ′) < 𝛿 (𝑞,𝑢). It is also a contradiction as all the neighbors of 𝑢 out of 𝑏𝑎𝑙𝑙 (𝑢, 3𝜏) are farther
away from 𝑞 than 𝑢. □

9.5 Proof of Theorem 2
Proof. Since 𝛿 (𝑞, 𝑣) < 𝜏 , Algorithm 3 must find a monotonic path 𝑃 from any node 𝑣0 to 𝑣 . Let

𝑃 = [𝑣0, 𝑣1, ..., 𝑣𝑥 , 𝑣]. We can build a sequence of concentric balls:𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣0)), ..., 𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣𝑥 )).
Let [𝑞,𝑖 =

𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞,𝛿 (𝑞,𝑣𝑖+1)))
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞,𝛿 (𝑞,𝑣𝑖 ))) , 𝑖 = 0, ..., 𝑥 − 1. We have [𝑞,𝑖 =

( 𝛿 (𝑞,𝑣𝑖+1)
𝛿 (𝑞,𝑣𝑖 )

)𝑚
, 𝑖 = 0, ..., 𝑥 − 1.

By Lemma 2, 𝛿 (𝑞, 𝑣𝑖 ) − 𝛿 (𝑞, 𝑣𝑖+1) > 𝜏 , 𝑖 = 0, ..., 𝑥 − 1. Let 𝑅𝑞 = max𝑣∈𝐷 𝛿 (𝑞, 𝑣). It follows that

[𝑞,𝑖 ≤
(𝛿 (𝑞, 𝑣𝑖 ) − 𝜏

𝛿 (𝑞, 𝑣𝑖 )

)𝑚
=

(
1 − 𝜏

𝛿 (𝑞, 𝑣𝑖 )

)𝑚
≤

(
1 − 𝜏

𝑅𝑞

)𝑚
=

(𝑅𝑞 − 𝜏

𝑅𝑞

)𝑚
and

𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣𝑥 ))) = 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣0)))[𝑞,0[𝑞,1 ...[𝑞,𝑥−1 ≤ 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝑅𝑞))
((𝑅𝑞 − 𝜏

𝑅𝑞

)𝑚)𝑥
Therefore,

𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞,𝛿 (𝑞,𝑣𝑥 )))
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞,𝑅𝑞 )) ≤ (( 𝑅𝑞−𝜏

𝑅𝑞
)𝑚)𝑥 . Recall that 𝑅 denotes the largest distance between

any two points in 𝐷 . We have 𝑅𝑞 ≤ 𝑅 + 𝜏 . Therefore,
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣𝑥 )))

𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝑅𝑞))
≤

(( 𝑅

𝑅 + 𝜏

)𝑚)𝑥
(7)

We perform logarithm operation on both sides of (7) and let [̂ = ( 𝑅
𝑅+𝜏 )

𝑚
be the base of the

logarithm. Since [̂ < 1, we have

𝑥 ≤ log[̂

𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝛿 (𝑞, 𝑣𝑥 )))
𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑞, 𝑅𝑞))

= log[̂

(𝛿 (𝑞, 𝑣𝑥 )
𝑅𝑞

)𝑚
≤ log[̂

(𝛿 (𝑞, 𝑣𝑥 )
𝑅 + 𝜏

)𝑚
=𝑚 log[̂

𝛿 (𝑞, 𝑣𝑥 )
𝑅 + 𝜏

The expectation of 𝑥 over all possible 𝑞 is E[𝑥] ≤ 𝑚E[log[̂
𝛿 (𝑞,𝑣𝑥 )
𝑅+𝜏 ] = 𝑚E[log[̂ 𝛿 (𝑞, 𝑣𝑥 )] −

𝑚E[log[̂ (𝑅 + 𝜏)]. Since 𝑅, [̂, and 𝜏 do not depend on 𝑞, it follows that

E[𝑥] ≤ 𝑚E[ln𝛿 (𝑞, 𝑣𝑥 )]
ln [̂

− 𝑚 ln(𝑅 + 𝜏)
ln [̂

=
E[ln𝛿 (𝑞, 𝑣𝑥 )] − ln(𝑅 + 𝜏)

(1/𝑚) ln [̂

=
E[ln𝛿 (𝑞, 𝑣𝑥 )] − ln(𝑅 + 𝜏)

(1/𝑚) (𝑚 ln𝑅 −𝑚 ln(𝑅 + 𝜏)) =
E[ln𝛿 (𝑞, 𝑣𝑥 )] − ln(𝑅 + 𝜏)

ln𝑅 − ln(𝑅 + 𝜏)

Let 𝑓 (𝑅) = E[ln𝛿 (𝑞,𝑣𝑥 ) ]−ln(𝑅+𝜏)
ln𝑅−ln(𝑅+𝜏) . We have E[𝑥] ≤ 𝑓 (𝑅). Because E[ln𝛿 (𝑞, 𝑣𝑥 )] and 𝜏 are indepen-

dent of 𝑅, we can compute the derivative of 𝑓 (𝑅) with respect to 𝑅 as 𝑓 ′(𝑅) =
1

𝑅+𝜏 (ln(𝑅 + 𝜏) − ln(𝑅))
(ln𝑅 − ln(𝑅 + 𝜏))2

+
(ln(𝑅 + 𝜏) − E[ln𝛿 (𝑞, 𝑣𝑥 )]) ( 1

𝑅
− 1

𝑅+𝜏 )
(ln𝑅 − ln(𝑅 + 𝜏))2

Since 𝑅 + 𝜏 > 𝛿 (𝑞, 𝑣𝑥 ), 𝑓 ′(𝑅) > 0. Hence, 𝑓 is an increasing function.

Recall the assumption that the points in 𝐷 are uniformly distributed with density 𝑔. Therefore,

𝑔 · 𝑉𝐷 = 𝑛. Based on the assumption 𝜓𝑉𝐷 ≥ 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑅)), 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑅)) ≤ 𝜓𝑉𝐷 = 𝜓 𝑛
𝑔
. Since 𝑔

increases with 𝑛, 𝑔 must be larger than a constant, say 𝑔0. Therefore, 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑅)) ≤ 𝜓 𝑛
𝑔
≤ 𝜓 𝑛

𝑔0

.

Based on the definition of the volume of ball, 𝑉𝑜𝑙 (𝑏𝑎𝑙𝑙 (𝑅)) = 𝜋𝑚/2𝑅𝑚

Γ (1+𝑚/2) , where Γ is the Gamma

function. Let 𝑏 = 𝜋𝑚/2

Γ (1+𝑚/2) . We have 𝑏 · 𝑅𝑚 ≤ 𝜓 𝑛
𝑔
and 𝑅 ≤ (𝜓𝑛

𝑔𝑏
)1/𝑚 ≤ ( 𝜓𝑛

𝑔0𝑏
)1/𝑚

.
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Let 𝑟 (𝑛) = ( 𝜓𝑛
𝑔0𝑏

)1/𝑚
. Since 𝑓 is an increasing function, we have the following.

E[𝑥] ≤ 𝑓 (𝑅) ≤ 𝑓 (𝑟 (𝑛)) = E[ln𝛿 (𝑞, 𝑣𝑥 )] − ln(𝑟 (𝑛) + 𝜏)
ln 𝑟 (𝑛) − ln(𝑟 (𝑛) + 𝜏) (8)

Since 𝛿 (𝑞, 𝑣𝑥 ) ≥ 𝛿 (𝑞, 𝑣), E[ln𝛿 (𝑞, 𝑣𝑥 )] ≥ E[ln𝛿 (𝑞, 𝑣)]. Since 𝑞 is in 𝑏𝑎𝑙𝑙 (𝑣, 𝜏), we need to analyze
two cases. i) If 𝜏 ≥

√
𝑚

2
( 2

𝑔
)1/𝑚

, i.e., 𝑏𝑎𝑙𝑙 (𝑣, 𝜏) contains the hypercube centered at 𝑣 with volume 2/𝑔,
since 𝑞 is uniformly distributed in the hypercube, E[ln𝛿 (𝑞, 𝑣)] ≥ ln( 1

2
( 2

ln𝑛
)1/𝑚) (cf. the proof of

Theorem 1). ii) If 𝜏 <
√
𝑚

2
( 2

𝑔
)1/𝑚

, since𝑞 is uniformly distributed in𝑏𝑎𝑙𝑙 (𝑣, 𝜏),E[ln𝛿 (𝑞, 𝑣)] ≥ ln(𝜏/2).
In sum, E[ln𝛿 (𝑞, 𝑣)] ≥ min(ln(𝜏/2), ln( 1

2
( 2

ln𝑛
)1/𝑚)).

Since E[𝑥] ≥ 0, both the denominator and numerator of (8) are negative. It follows that E[𝑥] ≤
𝑂 ( − ln(𝑟 (𝑛)+𝜏)

ln 𝑟 (𝑛)−ln(𝑟 (𝑛)+𝜏) ) as 𝜏 and𝑚 are constants. According to [17],
− ln(𝑟 (𝑛)+𝜏)

ln 𝑟 (𝑛)−ln(𝑟 (𝑛)+𝜏) and
(𝑟 (𝑛)+𝜏) ln(𝑟 (𝑛)+𝜏)

𝜏

have the same order of growth rate when 𝑛 → ∞. Therefore,

E[𝑥] ≤ 𝑂

( (𝑟 (𝑛) + 𝜏) ln(𝑟 (𝑛) + 𝜏)
𝜏

)
(9)

Since 𝜏 is is a constant and independent of 𝑛, it follows that

E[𝑥] = 𝑂 (𝑟 (𝑛) ln 𝑟 (𝑛)) = 𝑂 (𝑛
1

𝑚 ln𝑛
1

𝑚 ) = 𝑂 (𝑛
1

𝑚 ln𝑛) (10)

Since the expected node degree of 𝜏-MG is𝑂 (ln𝑛) (cf. Lemma 3), the time complexity of Algorithm 3

is 𝑂 (𝑛 1

𝑚 (ln𝑛)2). □

9.6 Proof of Lemma 6
Proof. For PG construction (Line 1), the time complexity is 𝑂 (𝑛 2+𝑚

𝑚 ln𝑛) with probability at

least 1 − (1/𝑒)
𝑚
4
(1− 3

𝑒2
)
. Specifically, if 𝐺0 is NSG, the work [17] presents that the time complexity

of NSG construction is 𝑂 (𝑛 1+𝑚
𝑚 ln𝑛 + 𝑛 ln𝑛). If 𝐺0 is HNSW, the time complexity is 𝑂 (𝑛 2+𝑚

𝑚 ln𝑛) with
probability at least 1 − (1/𝑒)

𝑚
4
(1− 3

𝑒2
)
by the construction logic of HNSW and Theorem 1.

The time complexity of the search on 𝐺0 (Line 5) is 𝑂 (𝑛 2

𝑚 ln𝑛) with probability at least 1 −
(1/𝑒)

𝑚
4
(1− 3

𝑒2
)
by Theorem 1. For sorting 𝐻𝑢 and processing the nodes in 𝐻𝑢 (Lines 6-16), the time

complexity is a constant, as ℎ is a constant. Since the for-loop (Lines 3-15) needs to repeat 𝑛 times,

the total time complexity is 𝑂 (𝑛 2+𝑚
𝑚 ln𝑛) with probability at least 1 − (1/𝑒)

𝑚
4
(1− 3

𝑒2
)
. □

9.7 Proof of Lemma 7
Proof. Suppose the beam search already enters 𝐻𝑣 and a node 𝑣 in 𝐻𝑣 is added to𝑊 . Since the

beam size is larger than ℎ + ℎ′
, 𝑣 will not be squeezed out of𝑊 during the beam search. Further, all

nodes that are reachable from 𝑣 along monotonic paths will be added to𝑊 during the beam search.

Based on the definition of 𝜏-MNG, 𝐺 must have a monotonic path from 𝑣 to 𝑣 . It follows that 𝑣 must

be added into𝑊 . Therefore, the probability of finding 𝑣 is no smaller than the probability that the

beam search enters 𝐻𝑣 . □
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