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Why Do We Need to Summarize
Existing Research Studies?

* You are not familiar with that topic.
* You are interested in conducting research for it.
* You want to understand the state-of-the-art solutions.

* You want to write a survey paper for that topic.
* You want to conduct a tutorial (write a tutorial paper) for that topic.
* You need to write the “Related Work™ section.

* Your PhD supervisor asks you to do so.



Steps for Summarizing Research Papers

1. Read papers.
2. Categorize those papers into different groups.

3. Summarize different groups of research papers.
1. Core 1deas of different groups.

2. The main differences (e.g., advantages and disadvantages) between different
groups of papers.



How to Read Papers?

* Looks easy. (But 1t 1s very difficult.)

* Not necessary (and not feasible) to fully read every paper.
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* Fully reading a paper does not indicate that you understand that paper.



How to Read Papers?

* Read title.
* You can filter a large portion of papers based on this.

Quantity

e Read Abstract and Introduction. Title

* You can categorize those papers into different groups.
* You can i1dentify important papers.

Abstract
Introduction

Preliminaries

* Read Preliminaries and Related Work.
* You can (further) categorize those papers into different groups.
* You can i1dentify some missing papers.

* Only need to fully read a few (1mportant) papers.



How to Read Papers?

* How many papers did I fully read for writing the paper “KARL: Fast Kernel
Aggregation Queries. ICDE 2019”7 Answer: 3
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ABSTRACT w0 ® Abstract CADICAM systems [BK 97), and multimedia databases
Density estimation forms a critical component of many analytics 5 2 S
ks inclding ol deesion,vsualzaon,and saisical i, “ . Absract stive methods such a3 sopport estor machines)th task of For an Increasing number of modern databass appllcs- xR 93) oM 93] sERN 01 1AL 8 991 ol e
These tasks often seek to classify data into high and low-density Density estimation is 2 core operation of virtually all probabilis. estimating a probability density from data is a fondamental tions, eflicient suppori of similarity search becomes an aches, similarity is defined in terms of & more or less com
regions of a probability distribution. Kernel Density Estimation o e®] & tic leaming methods (as opposed to discriminative methods). Ap. O, tpon which subsequent inference and decision-making important task. Along with the complexity of the objects ’PT:H similarity distance function. The smaller the sim
(KDE) is a powerful technique for computing these densities, offer- Proscies to density estimation can be divided info two principal Procedures are based. For example, in classification one such as images, molecules and mechanical parts, also the  grance value, the more similar are two abjects. Typi
ing cx\'rll.ml \l.m»l‘xul Ju.un\_\-hul qua:.h.\m total runtime. In this 2 » classes, parametric methods, such 2s Bavesian networks, and non.  must find P(C|X) = _ where (7 is one of K complexity of the similarity models increases more and oy types are the similarity rangs query which is specificd by
1:::::\:;.::‘:.:;‘; ;(‘[;F\:r:‘fll:sl:;\h x;:-‘.‘:;::; ':;lﬁ?"&::i.‘," :'dwm:; o m— = ° parametric methods such as kemel density estimation and smooth-  classes and p(X |() is the (class-conditional) density of the more. Whereas algorithms that are directly "md_ on in- a query object and a similarity distance range [0, €], and the
ettt O etk oiaied homuel denty o ey -y S ing splines. While neither choice should be universally preferred  data X . Disect density estimation provides a principled way dexes work well for simple medium-dimensional similar- . nearest neighbor query whichis specified by a query object
fication (KDC), applies threshold-based pruning to spatial index = ‘ . for all situations, 2 well-mowa benefit of nonparametric methods - to formulate many common types of analyses, for example ity distance functions, they do not meet the efficiency re- 30 5 number k for the k most similar objects to be retrieved
traversal to achieve asymptotic speedups over naive KDE, while w e e . wom 1 1s thetr ability o achieve estimation optimality for ANY input dis-  outlier detection (as low-density points), or more generally aquirements of complex high-dimansional snd adapialle Whereas single-step algorithms for similarity search al

maintaining accuracy guarantees. Instead of exactly computing each
point’s exact density for use in classification, KDC iteratively com-
putes density bounds and short-circuits density computation as soon
as bounds are either higher or lower than the target classification
threshold. On a wide range of dataset sizes and dimensions, tKDC
demonstrates empirical speedups of up to 1000x over alternatives.

1. INTRODUCTION

As data volumes grow 0o large for manual inspection, construct-
ing accurate models of the underlying data distribution is increas-
ingly important. In particular, estimates for the probability distribu-
tion of a dataset form a key component of analytics tasks including
spatial visualization [16, 17,29, statistical testing [15,33], physical
modeling [5.23], and density-based outlier detection [4, 19]. In
each of these use cases, density estimation serves as a common
primitive in classifying data into low and high-density regions of the
distribution [9, 10, 54]. We refer o this task as density classification.

As an example of densiy classificaton,considr the disrbution
of two measurements from a space shuttle sensor dataset [34], il-
d in Figure 1a. The underlying probability distribution for

even in two dimensions—is complex: ther

of the probability density distribution would enable sever:
Identifying points lying in low-density fringes of the distril
can help identify rare operating modes of the shuttle. Compu
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(a) Histogram of measurements,
cells colored by count

(b) Classifying points with prob-
ability density p > 0.0003

Measurements A and B (from columns 4 and 6 of the
shutle datase) come from  complex two.dimensional disribtion.
Density classification identifies points with high probability density
in the distribution.

the contour lines that separate the clusters can illustrate constraints
on shuttle operation. Bounding the probability density of a given
point lets us assign p-values to a given observation and perform
statistical tests. Each of these tasks requires density classification,
i.e. building a model of the distribution and using it to compare a
density estimate against a threshold. Figure 1b depicts how density
classification identifies points that lie above a density threshold.
Developing accurate and efficient models for these complex dis-
tributions is difficult. Popular parametric models such as Gaussian
and Gaussian Mixture Models [6] make strong assumptions about
the underlying data distribution. When these assumptions do not
hold—as in the shuttle dataset—these methods deliver inaccurate
densities. Moreover, even when their assumptions hold, popular
metric methods can require extensive parameter tuning. In
contrast, non-parametric methods such as Kemel Density Estima-
tion (KDE) [S6], k-nearest neighbors (KNN) [43], and One-Class
SVM (OCSVM) [48] can model complex distributions with few
assumptions but are in turn much more computationally expensive.
In particular, KDE dates to the 1950s [46] and is the subject
of considerable study in statistics, offering the benefit of asymp-
totically approximating any smooth probability distribution [S0].
Moreover, KDE provides normalized and differentiable probability
densities [52] that are useful in domains including astronomy [23]
and high-energy physics [15]. These properties make KDE ideal
for the density classification use cases outlined above. However,
when implemented naively, the total runtime cost of density estima-
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tribution as more data are observed. a property that no model with
& prametric assumption can heve, and one of great importance in
exploratory data analysis and mining where the underlying distri-
bution is decidedly unknown. To date, however, despite 2 wealth
of advanced underlying statistical theery. the use of nonparametric
methods has been limited by their computational infractibility for
all but the smallest datasets. In this paper, we present zn algorithm
for kemel density estimation, the chief nomparametric approach,
which is dramatieally faster than previous algorithmic apprcache;

scoring of points according to how “common’ they are. In
general, density estimation provides a classical basis acsoss
statistics for virtually any kind of data analysis in principle,
including clustering, classification, regression. time series
analysis, active learning. ad so o [7, 1]

1.2 Methods of estimating a density. The task of es-
timating a probability density from data i3 a fundamen-
tal one, upon which subsequent inference, leaming, 20

i terms of both dataset size and
algorithm provides arbitrarily tight sccuracy guarantees, provi me,
azytime convergence, works for all common kemel choices, and
requires 1o parameter tuning. The algoritim is 2 instance of 2
new principle of algorithn design: multi-recursion, or higher-order
divide-and-conguer.

tv sstimavion, romperamstic suistics, slgoribms,

oning trsas

1 Introduction: Data Analysis Without Assumptions
In this section we’ 1l briefly review the fundamental problem
of density estimation and the reasons that nonparametric
density estimation approaches are particularly well-suited
to exploratery data mining. We'll then describe the severe
computational obstacles posed by nomparametric demsity
estimation, the main factor limiting their use in large-scale
data analysis

King procedures are based. Density estimation
has thus beea heavily studied, under three primary umbrel-
as. i and Para-
metric methods are useful when the underlying distribution
s known in advance or i simple enough to well-modeled
by a standard distribution. Semi-paramerric models (such
as mixtures of simpler distributions) are more fexible and
more forgiving of the user's lack of the true modsl. but usu-
ally require significant computation in order to fit the result-
ing nonlinear models (such as the EM iterative re-estimation
method). Nonparametric methods assume the least strocture
of the three, and take the strongest stance of letting the data
speal for themselves [22). They are useful in the setting
of arbitrary-shape cistributions coming from complex real-
world date sousces. They ase generally the method of choice
in exploratory data analysis for this reason, 2ad can be vsed,
as the other types of models, for the entire range of statistical
settings, from supervised learning to unsupervised learning
to rei learning. However, they apparently often

11 The problem of density estimation. In
any probabilistic learning method (as opposed to discrimi-

come at the heaviest computational cost of the three types
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distance functions. The use of a multi-step query process-
ing strategy is recommended in these cases, and our in-
vestigations substantiate that the number of candidates
which are produced in the filter step and exactly evalu-
ated in the refinement step is a fundamental efficiency
parameter. After revealing the strong performance
shortcomings of the state-of-the-art algorithm for
k-nearest neighbor search [Korn et al. 1996], we present
a novel multi-step algorithm which is guaranteed to pro-
duce the minimum number of candidates. Experimental
evaluations demonstrate the significant performance
gai ious solution, and we observed average
improvement factars of up to 120 for the number of can-
didates and up to 48 for the total runtime.

1 INTRODUCTION

More and more applications of database systems require
the efficient support of similarity search. Examples include
molecular biology [BMH 92], medical imaging [Kor+ 96],
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ready meet the requirements of very large databases, these so-
lutions suffer from the increasing complexity of the objects
and of the similarity distance functions. For classic spatial
queries such as point queries and region queries, multi-step
algorithms have been developed tw efficiently support com-
plex objects [OM 88] [BHKS 93]. The paradigm of multi-
step query processing has already been extended to complex
similarity search, and available algorithms aim at similarity
range queries [AFS 93] [FRM 94] and k-nearest neighbor
queries [Kor+ 96). However, we abserved a bad performance
of the latter solution in our experiments on large image and
biomolecular databases. Starting from a theoretical analysis
of the situation, we develop a novel, optimal multi-step algo-
rithm for k-nearest neighbor search that implies a minimum
number of exact object distance evaluations.

The paper is arganized as follows: In the cemainder of this
introduction, we specify our problem of complex similarity
search. Section 2 is dedicated to algorithms for similarity
search and incremental similarity ranking that directly work
on index structures in a way they are employed by our new
method. In section 3, we present the available multi-step al-
gorithm for k-nearest neighbor search of | Kor+ 96] inclu
the significant efficiency shortcomings of the solutian, Fx-
‘periments substantiate that the number of candidates is a fun
damental efficiency parameter. We present our novel algo-
rithm in section 4 along with a proof that it exactly generates
the minimum number of candidates. The experimental eval-
uation in section 5 demonsirates the substantial performance
improvement before the paper is concluded in section 6.
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* How many papers did I (partly) read for writing this paper? Answer: Too many



How to Categorize Papers into Different Groups?

* Understanding the main technical novelty of this paper.
* This can normally be found in the abstract and introduction sections.

* What are the main novelties of this paper?
* Develop a new sampling method.
* Achieve non-trivial sampling guarantees.

* Which category does this paper belong to?
* Sampling

Improved Coresets for Kernel Density Estimates

Jeff M. Phillips*
University of Utah

Abstract

We study the construction of coresets for kernel den-
sity estimates. That is we show how to approximate
the kernel density estimate described by a large point
set with another kernel density estimate with a much
smaller point set. For characteristic kernels (including

Gaussian and Laplace kernels), our approximation pre-
serves the L., error between kernel density estimates
within error &, with coreset size 4/£2, but no other as-
pects of the data, including the dimension, the diameter
of the point set, or the bandwidth of the kernel common
to other approximations. When the dimension is unre-
stricted, we show this bound is tight for these kernels
as well as a much broader set.

This work provides a careful analysis of the iterative
Frank-Wolfe algorithm adapted to this context, an
algorithm called kernel herding. This analysis unites
a broad line of work that spans statistics, machine
learning, and geometry.

When the dimension d 1s constant, we demonstrate
much tighter bounds on the size of the coreset specifi-
cally for Gaussian kernels, showing that it is bounded by
the size of the coreset for axis-aligned rectangles. Cur-
rently the best known constructive bound is O(% logd %),

and non-constructively, this can be improved by 4 /log %

This improves the best constant dimension bounds poly-
nomially for d > 3.

Wai Ming Tai
University of Utah

infinite dimensional function spaces (each KDEp is a
point in such a space). From these techniques grew
much of non-linear data analysis (e.g., kernel PCA,
kernel SVM). In particular, an object in the RKHS
called the kernel mean is another representation of
KDEp, and its sparse approximation plays a critical
role in distribution hypothesis testing [15, 16], Markov
random fields [4], and even political data analysis [32].
Through a simple argument (described below), the
standard approximation of the kernel mean in the
RKHS implies a L, approximation bound of the kernel
density estimate in R? [4, 34] (which is stronger than
the L1 and Lo variants [37]).

More recently, the sparse approximation of a ker-
nel density estimate has gained interest from the com-
putational geometry community for its connections in
topological data analysis [29, 9], coresets [27], and dis-
crepancy theory [17].

In this paper, we provide strong connections be-
tween all of these storylines, and in particular provide a
simpler analysis of the common sparse kernel mean ap-
proximation techniques with application to the strong
Log-error coresets of kernel density estimates. With un-
restricted dimensions, we show our bounds for KDEs
are tight, and in constant dimensions of at least 3, we
polynomially improve the best known bounds so they
are now tight up to poly-log factors.

SODA 2018



How to Categorize Papers into Different Groups?

* What are the main novelties of this
paper?
* Develop a new sampling method.

* Achieve non-trivial sampling
guarantees.

* Which category does this paper
belong to?

* Sampling

1 INTRODUCTION

DATA is collected at ever-increasing sizes, and for many
datasets, each data point has geo-spatial locations (e.g.,
either (x, y)-coordinates, or latitudes and longitudes). Exam-
ples include population tracking data, geo-located social
media contributions, seismic data, crime data, and weather
station data. The availability of such detailed datasets enables
analysts to ask more complex and specific questions. These
have applications in wide ranging areas including biosur-
veillance, epidemiology, economics, ecology environmental
management, public policy and safety, transportation design
and monitoring, geology, and climatology. Truly large data-
sets, however, cannot be simply plotted, since they typically
exceed the number of pixels available for plotting, the avail-
able storage space, and/or the available bandwidth neces-
sary to transfer the data.

A common way to manage and visualize such large,
complex spatial data is to represent it using a continuous,
smoothed function, typically a kernel density estimate [1],
[2] (KDE). A KDE is a statistically and spatially robust
method to represent a continuous density using only a dis-
crete set of sample points. Informally, this can be thought of
as a continuous average over all choices of histograms, which
avoid some instability issues that arise in histograms due to
discretization boundaries. Or it is a convolution of all data
points with a continuous smoothing function. For a formal
definition, we first require a kernel K : R* x R? — R; we
will use the Gaussian kernel K(p,z) =e¢ 77 "‘, the most

o Y. Zheng is with Visa Research, Palo Alto, CA 94306 USA.
E-mail: yanzh.cs@gmail.com.
o Y. Ou is with Expedia, Inc., Bellevue, WA 98004 USA.
E-mail: olly93219@outlook.com.
o A. Lexand |. Phillips are with the University of Utah, Salt Lake City, UT
84112 USA. E-mail: alex@sci.utah.edu, jeffp@cs.utah.edu.
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2019. Date of publication 29 Apr. 2019; date of current version 29 June 2021.
(Corresponding author: Yan Zheng).
Recommended for acceptance by A. Perer and C. Scheidegger.
Digital Object Identifier no. 10.1109/TBDATA.2019.2913655

common and pervasive kernel. Then, given a planar point
set P C R?, the kernel density estimate is defined at any
query point z € R? as

1
KDEp(z) = WZ K(p.z).
peP

This allows regions with more points nearby (i.e., points x
with a large value K(p,z) for many p in P) to have a large
density value, and this function is smooth and in general
nicely behaved in many contexts. Using this function summa-
rizes the data, and avoids the over-plotting and obfuscation
issues demonstrated in Fig. 1 (left). However, just computing
KDEp(z) for a single value x requires O(|P|) time; it iterates
over all data points summing their contributions. While these
values can be precomputed and mapped to a bitmap, visually
interacting with a KDE e.g., to query and filter, would then
require expensive reaggregating. For instance, as a user
zooms in on a region of interest, ideally the visual interface
should increase the resolution, and possibly shift the grid
boundaries. This would require recomputing each of these

visible pixel values in O(|P|) time each,

Towards alleviating these issues, we propose to use core-
sets for KDE s. In general, a coreset () is a proxy for a large set
P; it is a carefully designed small subset of a very large data-
set P where (Q retains properties from P as accurately as pos-
sible. In particular, in many cases the size of (Q depends only
on a desired minimum level of accuracy, not the size of the

original dataset P. This implies that even if the full dataset

grows, the size of the coreset required to represent a phe-
nomenon stays fixed. This also holds when P represents a
continuous quantity (like the locus of points along a road net-
work, or a spread of particulates from a forest fire) and @
constitutes some carefully placed representative points [3].
Fig. 1 shows a dataset P with 700 thousand points and its cor-
eset from all reported crimes in Philadelphia from 2005-2014.
For more details on variations and constructions, refer to
recent surveys [4], [5].

Transactions on Big Data 2021 8




How to Categorize Papers into Different Groups?

* What are the main novelties of this paper?

* Develop a new function approximation
method.

* Achieve non-trivial approximation guarantees.

* Which category does this paper belong to?

* Function approximation

Figure 1: A color map for mb‘tor.;.rehicle thefts (black
dots) in Arlington, Texas in 2007 (Cropped from [23])

Fr(q) [46]. Equation 1 shows one example of Fp(q) with
Gaussian kernel, where P and disf(q. p;) are the set of two-
dimensional data points and Euclidean distance respectively.
Fo(q) = 3 w-exp(-ydist(q, pi)*) )

meP

In this paper, we will also consider Fp(q) with other kernel
functions in Section 5. As a remark, all kernel functions, that
we consider in this paper, are adopted in famous software,
e.g., Scikit-learn [38] and QGIS [43].

A higher #Fp(q) value indicates a higher density of data
points in the region around q. The above KDE function is
computationally expensive to compute. Given a data set
with 1 million 2D points, KDV involves over 2 trillion op-
erations [39] on a 1920 X 1080 screen. As pointed out in
[16, 19, 55, 58, 59], KDV cannot scale well to handle many
data points and display of color maps on high-resolution
screens. To address this problem, researchers have proposed
two variants of KDV, which aim to improve its performance:

» eKDV: This is an approximate version of KDV. A relative

error parameter, ¢, is used, such that for each pixel q, the
[pixel color is within (1 + €) of Fp(q). Figure 2a shows a color

ap g dled Dy d 5 s B
2b illustrates the corresponding color map for eKDV with
€ equal to 0,01. As we can see, the two color maps do not
look different. ¢ KDV runs faster than exact KDV [10, 20, 57—
59], and is also supported in data analytics software (e.g.,
Scikit-learn [38]).

o TKDV: In tasks such as hotspot detection [6, 23], a data
visualization user only needs to know which spatial region
has a high density (i.e., hotspot), and not the other areas.
One such hotspot is the red region in Figure 1. A color map
with two colors are already sufficient. Figure 2c shows such
a color map. To generate this color map, the TKDV can be
used, where a threshold, r, detemines the color of a pixel: a
color for q when #Fp(q) = 7 (to indicate high density), and
another color otherwise. This method, recently studied in
[10, 16], is shown to be faster than exact KDV.

Although eKDV and tKDV perform better than exact KDV,
they still require a lot of time. On a 270k-point crime dataset
[2], displaying a color map on a screen with 1280 x 960
pixels takes over an hour for most methods, including the
KDV solution implemented in Scikit-learn. In fact, these
existing methods often cannot deliver real-time performance,
which allows color maps to be generated quickly, thereby
saving the precious waiting time of data analysts.
Our contributions. In this paper, we develop a solution,
called QUAD, in order to improve the performance of eKDV
and TKDV. The main idea is to derive lower and upper bounds
of the KDE function (i.e., Equation 1) in terms of quadratic
functions (cf. Section 4). These quadratic bounds are theo-

[16], and KARL [10]), enabling faster pruning. In addition,
many KDV-based applications [14, 18, 23, 30] also utilize
other kernel functions, including triangular, cosine kernels
etc. Therefore, we extend our techniques to support other
kernel functions (cf. Section 5), which cannot be supported
by the state-of-the-art solution, KARL [10]. In our experi-
ments on large datasets in a single machine, QUAD is at least
one-order-of-magnitude faster than existing solutions. For
KDV, QUAD takes 100-1000 sec to generate color map for
each large-scale dataset (0.17M to 7M) with 2560 x 1920 pix-
els, using small relative error € = 0,01. However, most of the
other methods fail to generate the color map within 2 hours
under the same setting. For TKDV, QUAD can achieve nearly
10 sec with 1280 x 960 pixels, using different thresholds.

We further adopt a progressive visualization framework
for KDV (cf. Section 6), in order to continuously output par-
tial visualization results (by increasing the resolution). A
user can terminate the process anytime, once the partial vi-
sualization results are satisfactory, instead of waiting for the
precise color map to be generated. Experiment results show
that we can achieve real-time (0.5 sec) in single machine
without using GPU and parallel computation by combining
this framework with our solution QUAD.

The rest of the paper is organized as follows. We first
review existing work in Section 2. We then discuss the back-
ground in Section 3. Later, we present quadratic bound func-
tions for KDE in Section 4. After that, we extend our qua-
dratic bounds to other kernel functions in Section 5. We then
discuss our progressive visualization framework for KDV
in Section 6. Lastly, we show our results in Section 7, and
conclude in Section 8. All the proofs are shown in Section 9.
2 RELATED WORK
Kernel density visualization (KDV) is widely used in many
application domains, such as: ecological modeling [32, 33],
crime [6, 23, 56] or traffic hotspot detection [48, 52, 54], chem-
ical geology [49] and physical modeling [13]. For each appli-
cation, they either need to compute the approximate kernel
density values with theoretical guarantee [20] (¢KDV) or

SIGMOD 2020 9



How to Categorize Papers into Different Groups?

* What 1s good categorization of papers?
* Each category should not have too many/too few papers.
* Every paper in a category should share a lot of similar properties.
* Different categories should have significant differences.

 Bad categorization @
1. Paper I uses a linear function to approximate the kernel density function.
2. Paper 2 uses a quadratic function to approximate the kernel density function.
3. Paper 3 uses a polynomial function to approximate the kernel density function.

What’s wrong with this?




How to Categorize Papers into Different Groups?

* Good categorization ©
1. Paper A,, Paper A,, Paper A,,... adopt the function approximation method for

handling this problem.

2. Paper B,, Paper B,, Paper B;,... adopt the sampling method for handling this
problem.

3. Paper C,, Paper C,, Paper C,,... adopt the computational geometry method for
handling this problem.

Why 1s this categorization good?




How to Summarize Ditferent Groups of
Research Papers?

* Write down the core 1deas of each group of research papers in your own
words.

* Clearly point out the advantages and disadvantages.
* Not just a copy-and-paste work.
* Write these differences (or advantages/disadvantages) in your own words.

* Need to clearly understand different groups of papers.



How to Summarize Ditferent Groups of

Research Papers?

* Summarization of the sampling methods from some
weak researchers.

“The main contribution 1s that they provide strong connections
between all of these storylines, and 1n particular provide a
simpler analysis of the common sparse kernel mean
approximation techniques with application to the strong Loo-
error coresets of kernel density estimates. With unrestricted
dimensions, they show their bounds for KDEs are tight, and in
constant dimensions of at least 3, they polynomially improve
the best known bounds so these bounds are now tight up to

poly-log factors.”

‘No understanding‘

Improved Coresets for Kernel Density Estimates

Jeff M. Phillips*
University of Utah

Abstract

We study the construction of coresets for kernel den-
sity estimates. That is we show how to approximate
the kernel density estimate deseribed by a large point
set with another kernel density estimate with a much
smaller point set. For characteristic kernels (including
Gaussian and Laplace kernels), our approximation pre-
serves the L., error between kernel density estimates
within error &, with coreset size 4/¢2, but no other as-
peets of the data, including the dimension, the diameter
of the point set, or the bandwidth of the kernel common
to other approximations. When the dimension is unre-
stricted, we show this bound is tight for these kernels
as well as a much broader set.

This work provides a careful analysis of the iterative
Frank-Wolfe algorithm adapted to this context, an
algorithm called kernel herding. This analysis unites
a broad line of work that spans statisties, machine
learning, and geometry.

When the dimension d is constant, we demonstrate
much tighter bounds on the size of the coreset specifi-
cally for Gaussian kernels, showing that it is bounded by
the size of the coreset for axis-aligned rectangles. Cur-
rently the best known constructive hound is O(% lngd %),

: 1
and non-construetively, this can be improved by \'/ log <.
This improves the best constant dimension bounds poly-
nomially for d > 3.

1 Introduction

A kernel density estimate [26] of a point set P C
R smooths out the point set to create a continuous
function KpEp : RY — R. This object has a rich history
and many applications in statistical data analysis [33,
7. 31], with many results around the question of if P
is drawn iid from an unknown distribution v, how well
can KDEp converge to ¢ as a function of |P| (mainly in
the Lg [33, 31] and Ly [7] sense).

Then kernel techniques in machine learning [30]
developed the connection of kernel density estimates to
reproducing kernel Hilbert spaces (RKHS), which are

*Thanks to supported by NSF CCF-1350888, 11S-1251019,
ACI-1443046, CNS-1514520, and CNS-1564287.

Wai Ming Tai
University of Utah

infinite dimensional function spaces (each KDEp is a
point in such a space). From these techniques grew
much of non-linear data analysis (e.g., kernel PCA,
kernel SVM). In particular, an object in the RKHS
called the kernel mean is another representation of
KDEp, and its sparse approximation plays a critical
role in distribution hypothesis testing [15, 16], Markov
random fields [4], and even political data analysis [32].
Through a simple argument (described below), the
standard approximation of the kernel mean in the
RKHS implies a L., approximation bound of the kernel
density estimate in R? [4, 34] (which is stronger than
the Ly and Ls variants [37]).

More recently, the sparse approximation of a ker-
nel density estimate has gained interest from the com-
putational geometry community for its connections in
topological data analysis [29, 9], coresets [27], and dis-
ancy oy 17

In this paper, we provide strong connections be-
tween all of these storylines, and in particular provide a
simpler analysis of the common sparse kernel mean ap-
proximation techniques with applieation to the strong
Leoc-error coresets of kernel density estimates. With un-
restricted dimensions, we show our bounds for KDEs
are tight, and in constant dimensions of at least 3, we
polynomially improve the best known bounds so they
are now tight up to poly-log factors.

Formal definitions. For a point set P C R? of size
n and a kernel K : BY x RY — R, a kernel density
estimate KDEp at r € RY is defined KDEp(z) =
HT\E;;(F K(x,p). Our goal is to construct a subset
¢ C P, and bound its size, so that its KDE has &-

bounded L. error:

|KDEP — KDEQ|[|oe = max |KDEP(2) — KDEQ(2)| < €.
relRd

We call such a subset @ an e-coreset of a kernel range
space (P,X) (or just an e-kernel coreset for short),
where X is the set of all functions K (z, -) represented by
a fixed kernel K and an arbitrary center point o € R%

While there is not one standard definition of a
kernel, many of these kernels have properties that unite
them. Common examples are the Gaussian kernel
K(z,p) = exp(—|z — p||?/o?), the Laplace kernel

13




How to Summarize Different Groups of
Research Papers?

* Summarization of the sampling methods from professional researchers.

Data Sampling

Advantages and Disadvantages of
* Consider the kernel density function (with the Gaussian kernel). D ata Sampllng
FrlQ) = Z w - exp (—%dist(q, p)z)
pEeEP

» Advantages ©
+ Can achieve probabilistic approximation guarantees for generating KDV.
& 5 @ o o ©° o  Can reduce the worst-case time complexity for generating KDV.
(o) O : o) . " >
o 208 B Suinpling 2 o 5 Can handle all kernel functions.
O (o] 2 le) (0] o
o o 5 % o
o 9 o © o ©° o o

* Disadvantages ®
Compute the modified kernel density function based on the sampled dataset S.
M (q) = Z w; - exp (‘b—lzdiSt(q'PiV)

» Cannot achieve exact solution.
piES

* Can still be slow for generating KDV.
* Can degrade the practical visualization quality.

‘With deep understanding

14



How to Summarize the Main Differences
Between Different Groups of Papers?

* Summarization needs your own view (the most difficult part for students).

 Be brave

 Academic freedom protects you. ©
* No one will laugh at you.
* No one will blame you even if you are wrong.

* If they laugh at you or blame you, you can simply say this is academic freedom (I can say
whatever I say as long as they are ethical or they do not break the law.).

* Don’t be afraid 1f it 1s wrong.
* “Everything you say” is only based on the best of your knowledge at that time.
* You only need to say “I am sorry.” or “I learn it.” when it turns out to be wrong.



Examples of Summarization of Research Papers

* “Large-scale Geospatial Analytics: Problems, Challenges, and
Opportunities” in SIGMOD 2023 Tutorial (from pages 27 - 36 1n the
slides from this link)

 “Kernel Density Visualization for Big Geospatial Data: Algorithms
and Applications” in MDM 2023 Tutorial (from pages 18 - 32 1n the
slides from this link)



https://github.com/edisonchan2013928/Tutorial-slides/blob/main/LSGA_SIGMOD2023_Tutorial.pdf
https://github.com/edisonchan2013928/Tutorial-slides/blob/main/KDV_tutorial_slides.pptx

More Suggestions: Reading Papers

* Not necessary to read every word of the paper.
* Don’t believe everything in the paper.

* Don’t destroy your confidence.



More Suggestions: Reading Papers

* Suppose that you want to improve
the efficiency of Kernel Density
Visualization and you see this
paper. What do you think?

 Some students: This 1s the end of
the world. &,

* Some good researchers: Worth for
investigating more. @

ABSTRACT

Kernel density visualization, or KDV, is used to view and
understand data points in various domains, including traffic
or crime hotspot detection, ecological modeling, chemical
geology, and physical modeling. Existing solutions, which
are based on computing kernel density (KDE) functions,
are computationally expensive. Our goal is to improve the
performance of KDV, in order to support large datasets
(e.g., one million points) and high screen resolutions (e.g.,
1280 x 960 pixels). We examine two widely-used variants
of KDV, namely approximate kernel density visualization
(eKDV) and thresholded kernel density visualization (rKDV).
For these two operations, we develop fast solution, called
QUAD, by deriving quadratic bounds of KDE functions for
different types of kernel functions, including Gaussian, tri-
angular etc. We further adopt a progressive visualization
framework for KDV, in order to stream partial visualization
results to users continuously. Extensive experiment results
show that our new KDV techniques can provide at least one-
order-of-magnitude speedup over existing methods, with-
out degrading visualization quality. We further show that

UAD can produce the reasonable visualization results in

real-time (0.5 sec) by combining the progressive visualization

framework in single machine setting without using GPU and

parallel computation.




* They focus on developing approximate
algorithms. How about exact algorithms?

* Maybe they use some “good” datasets.

* It 1s possible that progressive
visualization framework provides bad

results.

More Suggestions: Reading Papers

DOUBT

ABSTRACT

Kernel density visualization, or KDV, is used to view and
understand data points in various domains, including traffic
or crime hotspot detection, ecological modeling, chemical
geology, and physical modeling. Existing solutions, which
are based on computing kernel density (KDE) functions,
are computationally expensive. Our goal is to improve the
performance of KDV, in order to support large datasets
(e.g., one million points) and high screen resolutions (e.g.,
1280 x 960 pixels). We examine two widely-used variants
of KDV, namely approximate kernel density visualization
(eKDV) and thresholded kernel density visualization ( TKm.
For these two operations, we develop fast solution, called
QUAD, by deriving quadratic bounds of KDE functions for
different types of kernel functions, including Gaussian, tri-
angular etc. We further adopt a progressive visualization
framework for KDV, in order to stream partial visualization
results to users continuously. Extensive experiment results
show that our new KDV techniques can provide at least one-
order-of-magnitude speedup over existing methods, with-
out degrading visualization quality. We further show that
QUAD can produce the reasonable visualization results in
real-time (0.5 sec) by combining the progressive visualization
framework in single machine setting without using GPU and
parallel computation.

19



More Suggestions: Reading Papers

* Only focus on generating KDV 1n the
planar space.

* How about the road network space?

* How about the temporal part of those (O nepolater A | .
data pOiIltS? Lowes ik | . .o

I Highest risk

® Motor Vehicle Thefts (2007)

20



More Suggestions: Reading Papers

* Only focus on Gaussian kernel function and those kernel functions 1n
the following table.

Kernel function Equation (K(q, p)) Used in
Triangular max(1 -y - dist(q. p).0) [18, 23]
dist(q, if dist(q, pj) € 2=
Cosine cos(ydist(q.p)) it dist(q. pi) 24 [14, 23, 30]
0 otherwise
Exponential exp(—y - dist(q,p)) [23]

low about other kernels? (Epanechnikov kernel and quartic kernel are

Iso very famous.)

NOT NECESSARY TO FOLLOW THE SAME SETTING

21



How to Find Other Settings?

* Keep answering questions when you are reading papers.
* How about the road network space? [a]
* How about the temporal part of those data points? [b]
 How about other kernels? [a, b, c]

[a] Tsz Nam Chan, Zhe L1, Leong Hou U, Jianliang Xu, Reynold Cheng: “Fast Augmentation Algorithms for
Network Kernel Density Visualization” PVLDB 2021 (vol 14), pages 1503-1516.

[b] Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, Jianliang Xu: “SWS: A Complexity-Optimized
Solution for Spatial-Temporal Kernel Density Visualization” PVLDB 2022 (vol 15), pages 814-827.

[c] Tsz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu: “SLAM: Efficient Sweep Line Algorithms for
Kernel Density Visualization” SIGMOD 2022, pages 2120-2134.

* Possible for you to have new problem settings (1.e., new papers) by
answering those questions.



More Suggestions: Writing Papers

Topic space

Weak researcher: There will be no
topic to work with when 1 get a
tenure-track position. I need to retain
some of them for publishing when I
get the tenure-track position.

Topic space

LA Strong researcher: The more I
=~ write, the more topics I will have.



More Suggestions: Reading and Writing Papers

Read papers

Read papers ——Write papers

Do research

Do research

Write papers

Junior students “Senior’ students



More Suggestions: Reading and Writing Papers

1. Want to work on KDV.
2. Start reading some papers in

KDV.

Read papers ——Write papers

3. Ihave learnt somethings. Write 1t
down 1n the draft. Moreover,

there are still some questions
(e.g., Can indexing structures be Do research

used in KDV?).

4. Check the literature again and
figure out the answers and ask
some additional questions...



More Suggestions: Reading and Writing Papers

. Are those indexing structure good?

(Do some research)

Read papers ——Write papers

. I have learnt somethings. Write it

down 1n the draft. Moreover, there
are still some other questions.

. Check the literature again and figure Do research

out the answers and ask some
additional questions...

. Come up with new 1dea. Write CVCry day!

. Write it down 1n the draft and do
research.




Our New Book

June 30,2025

Tsz Nam Chan >4
Dingming W o, ——
Edit?)rs - \ f
Mastering i
the Academic

Writing Mindset

A Guide to Crafting Computer
Science Papers

@ Springer

Tsz Nam Chan, Dingming Wu

Mastering the Academic Writing
Mindset

A Guide to Crafting Computer Science Papers

September 12, 2025

Springer Nature
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Our New Book

* Hard copy can be bought in some bookstores (€.g., Amazon).
* My signature is free. ©

* Soft copy 1s available online (open access).
* Available on 315t March 2026.

BUEE 3 iz, B8R BE
ama;on @ hEXE E# ~ 18%F Amazon EHZH. BPROES . SE0TH -\_!mg

=28 <A PrimeVideo LBLEERE ILSF FEFERE 2LBHAS

books 9%~ #ESHISE v KESEEH v BEREREZ v 28 v 5 v HOBHE -

U Kindle Paperwhite Effhk mm=,

E¥ o AENSEERA » HFEARTY » TEVIEHERES ATEE » H5E

Mastering the Academic Writing Mindset: A Guide to th =
. . Us$47.49
Crafting Computer Science Papers
honage {E& Tsz Nam Chan (&), Dingming Wu (&) Hit i Sisfiussa7.4s v
In the undergraduate study of computer science, a lecturer only teaches somethings that are in the AR N S TR AT .
literature (most likely in a open access textbook). Those knowledges may have been discovered before in EH AR S,
several decades ago. A student is deemed to be good if they have perfectly finished assignments and © EEZPEKE

have prepared well for their examinations. As an example, those students can easily get high grades for
all fundamental courses (e.g., programming courses, linear algebra, probability and statistics, data
structures, and design and analysis of algorithms) if they have worked extremely hard for the exercises | MmAaCES
that are provided in those open access textbooks or in class. Therefore, the undergraduate students do
not need to have creativity (e.g., establish new knowledges) for obtaining an undergraduate degree. All
they need to do is to consolidate their foundation. However, the most critical transition from
undergraduate study to postgraduate study is to create new knowledges, which advance the state of the
art in the computer science field. Moreover, postgraduate students need to write papers in a logical way

(by telling a great story) so that other reviewers can accept them. In order to accomplish these two tasks, 2 8
students need to change their mindsets for adapting to this new environment. In this open access book,

we discuss this main theme in detail for analyzing the common mistakes that are easily made by new
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