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ABSTRACT
Network kernel density visualization (NKDV) is an important tool
for many application domains, including criminology and trans-
portation science. However, all existing software tools, e.g., SANET
(a plug-in for QGIS and ArcGIS) and spNetwork (an R package),
adopt the naïve implementation of NKDV, which does not scale
to large-scale location datasets and high-resolution sizes. To over-
come this issue, we develop the first python library, called PyNKDV,
which adopts our complexity-reduced solution and its parallel im-
plementation to significantly improve the efficiency for generating
NKDV. Moreover, PyNKDV is also user-friendly (with four lines
of python code) and can support commonly used geospatial ana-
lytic systems (e.g., QGIS and ArcGIS). In this demonstration, we
will use three large-scale location datasets (up to 7.71 million data
points), provide different python scripts (in the Jupyter Notebook),
and install existing software tools (i.e., SANET and spNetwork) for
participants to (1) explore different functionalities of our PyNKDV
library and (2) compare its practical efficiency with existing soft-
ware tools.
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1 INTRODUCTION
Network kernel density visualization (NKDV) [14] has been ex-
tensively used in many application domains. Some representa-
tive examples include criminology [18, 21] and transportation sci-
ence [16, 17]. Figure 1 shows an example for generating NKDV
using the 311-call location dataset in San Francisco [5]. Note that
those red road segments (e.g., in the Lower Nob Hill district) in-
dicate that they have higher density values for the 311 calls. In
contrast, other road segments with green color (e.g., in the Western
Addition district) have lower density values.

(a) 311-call location data points (b) NKDV
Figure 1: Generate NKDV (in (b)) for the 311-call location
data points (i.e., the black dots in (a)) around the Lower Nob
Hill and Western Addition districts in San Francisco, where
the road segments with the red color and green color (in (b))
are the hotspot and coldspot regions, respectively.

Due to the wide applicability of NKDV, some recent geospatial
software packages, including spNetwork [7] (an R package) and
SANET [6] (a plugin for QGIS [4] and ArcGIS [1]), have been de-
veloped for supporting this tool. However, all these packages are
based on the naïve implementation of NKDV, which suffers from
high time complexity. With the rapid growth of geospatial data,
many large-scale location datasets can be collected and analyzed
nowadays. Therefore, existing packages are inefficient (or even
infeasible) to generate NKDV for such large-scale datasets. Using
the Chicago crime dataset [2] (with 7.69 million data points) as an
example, both SANET and spNetwork take more than four hours
for generating a single NKDV. Worse still, domain experts [17, 21]
need to perform exploratory analysis, who may need to generate
multiple NKDVs for a single dataset. This further amplifies the inef-
ficiency issue for using off-the-shelf software packages to support
this task.

To tackle this issue, we propose the first python library, called
PyNKDV, for efficiently generating NKDV in different geospatial
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analytic systems, including QGIS and ArcGIS. There are two main
features for this library that have not been considered by existing
software packages. First, we adopt our state-of-the-art algorithm,
namely aggregate distance augmentation (ADA) [14], which re-
duces the time complexity for computing NKDV. Second, we paral-
lelize the ADA method in order to further boost the efficiency of
generating NKDV. Table 1 compares different software tools. As a
remark, there are also some fast software tools, e.g., LIBKDV [13]
(based on [11, 15]) and KDV-Explorer [12] (based on [10]), for gen-
erating kernel density visualization (KDV), which is the variant of
this problem. However, KDV does not consider the road network,
which can provide inaccurate visualization results [14, 22].
Table 1: Comparisons of different software tools for gener-
ating NKDV.

Software tool Time-complexity Support Used inreduction parallelization
SANET [6] No No QGIS, ArcGIS

spNetwork [7] No No R
PyNKDV (ours) Yes Yes Python, QGIS, ArcGIS

In this demonstration paper, we first overview the technical de-
tails of PyNKDV in Section 2. Then, we discuss how to use PyNKDV
in Section 3. Lastly, we provide the demonstration plan for PyNKDV
in Section 4.

2 TECHNICAL OVERVIEW OF PyNKDV
In this section, we have a technical overview of our library, PyNKDV.
First, we formally define the NKDV problem in Section 2.1. Then,
we illustrate our complexity-reduced method, aggregate distance
augmentation (ADA) [14], in Section 2.2. Lastly, we discuss how
to parallelize our ADA method to further improve its practical
efficiency in Section 2.3.
2.1 Network Kernel Density Visualization

(NKDV)
To generate NKDV for a location dataset (cf. the black data points
in Figure 2a), we need to first divide each road into different lixels q
(i.e., road segments). Then, we color each lixel q (cf. Figure 2b) based
on the network kernel density function value (cf. Definition 1).

q

(a) Data points (b) NKDV

Figure 2: Illustration ofNKDV,wherewe use different colors
to denote the density values. For example, the red color and
green color denote the high-density (i.e., hotspot) region and
low-density (i.e., coldspot) region, respectively.

Definition 1. [14] Given a road networkG = (V , E), a location
dataset P = {p1,p2, ...,pn } in G, we need to compute the network

kernel density function value FP (q) (cf. Equation 1) for each lixel q.

FP (q) =
∑
p∈P

w · KG (q,p) (1)

wherew and KG (q,p) are the normalization constant and the kernel
function between the lixel q and the data point p. Some representative
kernel functions are summarized in Table 2.

Table 2: Some representative kernel functions, where
distG (q,p) and b denote the shortest path distance and the
bandwidth parameter, respectively.

Kernel KG (q, p) Used in

Triangular

{
1 − 1

b distG (q, p) if distG (q, p) ≤ b
0 otherwise

[8, 19]

Epanechnikov

{
1 − 1

b2
distG (q, p)2 if distG (q, p) ≤ b

0 otherwise
[8, 23]

Quartic

{
(1 − 1

b2
distG (q, p)2)2 if distG (q, p) ≤ b

0 otherwise
[19, 22]

As a remark, we adopt the Epanechnikov kernel for discussion
in this paper due to space limitations. However, our method can be
extended to other kernel functions (cf. Table 2).

2.2 Aggregate Distance Augmentation (ADA)
We consider P(e) to be the set of data points in an edge e . Since
every data point is on one and only one edge, we can decompose
the network kernel density function FP (q) (cf. Equation 1 with the
Epanechnikov kernel in Table 2) into the following expression.

FP (q) =
∑
e ∈E

fe (q) (2)

where

fe (q) =
∑

p∈P (e)

w ·

{
1 − 1

b2distG (q,p)
2 if distG (q,p) ≤ b

0 otherwise
(3)

Hence, if we can reduce the time complexity for computing fe (q),
we can also reduce the time complexity for computing FP (q) (i.e.,
generating NKDV). To achieve this goal, we augment the aggregate
distances (cf. Equation 4 and Equation 5) for all data points p in
each edge e = (u,v) in advance (cf. Figure 3).

a
(deд)
P (u ,p) =

∑
pi ∈P (u ,p)

distG (u,pi )
deд (4)

a
(deд)
P (v ,p) =

∑
pi ∈P (v ,p)

distG (v,pi )
deд (5)

where P(u,p) and P(v,p) are two sets of data points from node u
and node v , respectively, to the data point p and deд denotes the
degree value (e.g., deд = 0, deд = 1, and deд = 2 are used in the
Epanechnikov kernel).

Therefore, if we have obtained the shortest path distances from
the lixel q to the node u and node v (cf. two orange dashed lines
in Figure 3), i.e., distG (q,u) and distG (q,v), respectively, we can
use the binary search algorithm to compute fe (q) in O(log |P(e)|)
time (instead of O(|P(e)|) time), based on the aggregate distances
(cf. Equation 4 and Equation 5).

As an example, we consider the case distG (q,u) ≤ b and
distG (q,v) > b in Figure 3. Note that only those data points with
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Figure 3: Core idea of ADA.

distG (u,p) ≤ b −distG (q,u) can contribute to fe (q) (cf. Equation 3).
Therefore, we can use the binary search algorithm to first obtain
the data point p∗ in e = (u,v) such that distG (u,p∗) attains the
maximum value that still fulfills the inequality. Then, we can evalu-
ate fe (q) in O(1) time using the following expression (based on the
simple mathematical derivation).

fe (q) = w
(
1−

distG (q,u)
2

b2

)
a
(0)
P (u ,p∗)−

2w · distG (q,u)

b2
a
(1)
P (u ,p∗)−

w

b2
a
(2)
P (u ,p∗)

By adopting the similar idea, we can also handle three other
cases (i.e., (1)distG (q,u) > b anddistG (q,v) > b, (2)distG (q,u) > b
and distG (q,v) ≤ b, and (3) distG (q,u) ≤ b and distG (q,v) ≤ b)
in O(log |P(e)|) time. The details can be found in [14]. In Theo-
rem 1, we further state that the ADAmethod only takesO

(
|E |

(
TSP+

L log
( n
|E |

) ) )
time, where TSP denotes the time complexity of the

shortest path algorithm.

Theorem 1. [14] Given a road network G = (V , E), a location
dataset P = {p1,p2, ...,pn } with size n, the ADA method takes
O
(
|E |

(
TSP + L log

( n
|E |

) ) )
time to generate NKDV (cf. Definition 1).

Compared with the state-of-the-art method [20], which takes
O(|E |TSP+nL) time, our ADAmethod achieves the lower worst-case
time complexity (as O

(
|E |L log

( n
|E |

) )
< O(nL)).

2.3 Parallelization of ADA
In this section, we extend our previous work [14] to parallelize
the ADA method in order to further improve its efficiency for
generating NKDV. Consider two arbitrary lixels, e.g., q1 and q2,
in the edge ê = (x,y) in Figure 4. Note that computing fe (q1)
(FP (q1)) and computing fe (q2) (FP (q2)) (1) do not modify the same
computational resources and (2) are not dependent with each other
(i.e., can execute them concurrently).

𝑥

𝑦

𝑞1
𝑞2 𝑞3

Figure 4: Parallelization of the ADA method.

Based on these two reasons, we adopt the round robin approach
to assign CPU threads to handle different lixels (e.g., assign the
thread 1, thread 2, and thread 3 to compute the network kernel
density function values (cf. Equation 2) for the lixels q1, q2, and q3,

respectively, in Figure 4), which can highly parallelize our ADA
method.

3 HOW TO USE PyNKDV?
In order to adopt our library, PyNKDV, for generating NKDV in
a location dataset, users (or domain experts) only need to write
four lines of python code (cf. Figure 5), which correspond to these
four steps, (1) map data points into a road network, (2) initialize
the parameters for generating NKDV, (3) compute NKDV, and (4)
output NKDV into a shapefile for displaying in geospatial analytic
systems.

Figure 5: Four lines of python code to invoke PyNKDV for
outputting NKDV.

Map data points into a road network: In the first step, users need
to provide a csv/json file, which stores the latitude and longitude
values for each geographical event (e.g., crime and traffic accident).
With this input, the function, map_road_network (cf. the first line
in Figure 5), adopts the OSMnx python library [9] to first extract all
nodes and edges that are inside the minimum bounding rectangle
of these location data points, and then further integrates these data
points into the road network.
Initialize the parameters for generating NKDV: In the second
step, users need to specify multiple parameters for generating
NKDV, namely (1) the bandwidth parameter b (cf. Table 2), which
controls the smoothness of the visualization (i.e., the size of a
hotspot region) and (2) the lixel size (cf. Figure 2), which deter-
mines the resolution of the visualization, and (3) the number of
CPU threads for parallelizing our ADA method (cf. Section 2.3).
Compute NKDV: In the third step, our library adopts the
complexity-reduced solution, ADA (cf. Section 2.2), and its par-
allel implementation (cf. Section 2.3) to generate NKDV based on
the parameters that are chosen in the second step.
Output NKDV into a shapefile for displaying in geospatial
analytic systems: In the fourth step, our library can output the
NKDV result (obtained in the third step) into a shapefile, which can
be visualized in the commonly used geospatial analytic systems,
QGIS [4] and ArcGIS [1].

4 DEMONSTRATION PLAN
We will use three large-scale location datasets, which are New
York traffic accident dataset [3], Chicago crime dataset [2], and
San Francisco 311-call dataset [5], for demonstrating our PyNKDV
in the Jupyter Notebook. Here, we consider four demonstration
scenarios.
Generating NKDVs for different location datasets: We prepare
the python script in the Jupyter Notebook for using our PyNKDV
to generate NKDV in each location dataset. Moreover, we also in-
stall two state-of-the-art NKDV software tools (cf. Table 1), i.e.,
SANET [6] and spNetwork [7], in our computer. In this demonstra-
tion scenario, participants can run different parts of the python
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𝑏 = 100m 𝑏 = 500m 𝑏 = 1000m 𝑏 = 5000m

Figure 6: Generate NKDVs for the San Francisco 311-call dataset with four bandwidth parameters, namely 100m, 500m, 1000m,
and 5000m, in QGIS.

script in order to visualize the hotspots of different datasets in
QGIS/ArcGIS (e.g., NKDV in Figure 1b, which is obtained by our
PyNKDV, is displayed in QGIS). Furthermore, they can compare
the efficiency of different software tools.
Varying the bandwidth parameter b: Since the bandwidth pa-
rameter b can significantly affect the hotspot regions, domain ex-
perts [17, 18] need to generate the meaningful NKDV with the
proper bandwidth parameter b. To achieve this goal, they first adopt
the exploratory (or trial-and-error) approach to generate NKDVs
with multiple bandwidth parameters and then choose the most
meaningful one. Using Figure 6 as an example, we cannot detect
any hotspot if b = 100m and we can find an overly large hotspot
region if b = 1000m or b = 5000m. Compared with Figure 6a, Fig-
ure 6c, and Figure 6d, using b = 500m as the bandwidth parameter
(cf. Figure 6b) can detect more meaningful hotspots.
Varying the lixel size: To generate NKDV with different resolu-
tions, we can tune the lixel size in our PyNKDV library (cf. the
second line in Figure 5). If the lixel size is smaller (i.e., more lixels),
the NKDV result is more accurate but the response time is higher.
In this demonstration scenario, participants can choose multiple
lixel sizes in order to understand how this parameter affects the
visualization quality and efficiency of NKDV. Using the road r (i.e.,
the black arrow) in Figure 7 as an example, the smaller lixel size
can show more changes in the hotspot map when we zoom in to
the street level.

(a) Lixel size = 20m (b) Lixel size = 200m

Figure 7: Generate NKDVs for the San Francisco 311-call
dataset with two lixel sizes, which are 20m and 200m.
Varying the number of CPU threads: Recall from Section 2.3
that we have parallelized our ADA method in the PyNKDV library.
Therefore, we also provide the python script in the Jupyter Note-
book to show the practical performance of this implementation
with respect to different numbers of CPU threads. In this demon-
stration scenario, participants can specify the number of threads
for calling our PyNKDV library.
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