

Scan the QR code for GitHub repository access.

A Computation-Aware Shape Loss Function for Point Cloud Completion

SKL-IOTSC

智慧城市物聯網國家重點實驗室(澳門大學

門大學

UNIVERSIDADE DE MACAU

UNIVERSITY OF MACAU

Shunran Zhang^{1, 2§}, Xiubo Zhang^{1§}, Tsz Nam Chan³, Shenghui Zhang¹, Leong Hou U^{1*}

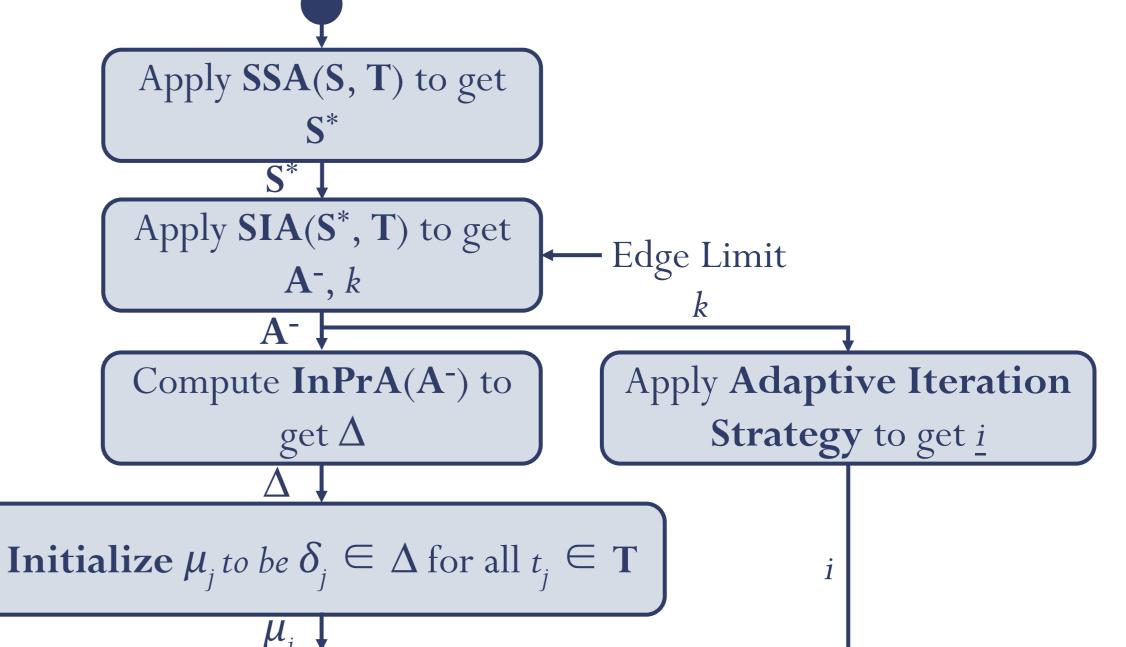
¹University of Macau, ²Shenzhen Institute of Advanced Technology, ³Shenzhen University.

Introduction

- **Challenges with LiDAR-Generated Point Clouds**
- Occlusions and limited angles may not fully capture object surfaces.
- Impacts registration and object detection tasks.
- **Prior Approaches to 3D Shape Completion**
- Learning-based techniques confront complexity with irregular and unordered point clouds for loss function.
- Existing metrics like Chamfer Distance and Earth Mover's Distance have drawbacks.
 - Chamfer Distance (CD) is efficient but not sensitive enough.
 - > Earth Mover's Distance (EMD) is accurate but **computationally** intensive.
- Key Contribution: Adaptive Auction with Initial Price Algorithm (AAIP)

Auction Algorithm with Initial Prices

中国科学院深圳先进技术研究院 SHENZHEN INSTITUTE OF ADVANCED TECHNOLOGY



- Introduces initial prices to accelerate convergence in auction algorithms.
- Proposes an efficient algorithm for the computation of initial prices.
- Presents an adaptive Earth Mover's Distance approximation scheme for \bullet shape loss functions.
- Experimental results show reduced errors and superior training outcomes.

Point Cloud Completion Problem

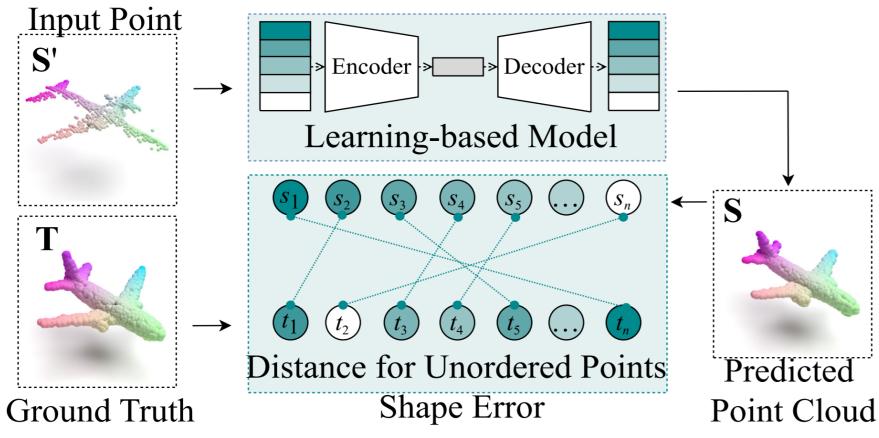


Figure 1: The illustration of point cloud completion problem.

- Define the point cloud completion problem as predicting **T** given **S**².
- S' is not necessarily a subset of T and there is no explicit correspondence between points in **S'** and points in **T**, because they are independently sampled from the underlying object surfaces.

The Auction Algorithm

Run Auction Algorithm (*i* iterations) with μ_i for all t_i

Figure 3: Adaptive Auction with Initial Price Algorithm Flowchart.

- Discern that given a local assignment A^- of $S^- \subseteq S$ and $T^- \subseteq T$, denoting the final selling price of the assigned $t_i \in \mathbf{T}^-$ in \mathbf{A}^- as μ^- .
- **Definition 1** (Initial prices, Δ). We say the set of initial prices Δ is valid if • $0 \leq \delta_i \leq \mu_i^-$, $\forall t_i \in \mathbf{T}^-$.
- Correctness and Effectiveness of initial prices have been proved. (cf. **Thm. 1** and **Lem.1**)
- Configuration of Initial Prices
- Objectives for setting initial prices:
 - > Aim to configure initial prices to meet criteria of Thm. 1, ensuring $\delta_i \leq \mu_i^-$ for each task t_i .
 - > Seek to offer a controlled solution cost to **mitigate the overall** computational expense.
- **Lemma 2** (Configuration of initial prices). Assuming that (s_i, t_j) is an assigned pair in a local assignment A⁻. Furthermore, within this assignment, $\forall s_p$ $\in (\mathbf{S}^{-} - s_i)$, the sink assigned to s_p is denoted as $t_q \in \mathbf{T}^{-}$. Considering the value α_{j} obtained by evaluating $\max_{s \in S^{-}} \{d_{pq} - d_{pj} + \varepsilon\}$, we can set $\delta_{j} = \max\{0, \alpha_{j}\}$.

This choice ensures that δ_i satisfies Theorem 1, specifically $\delta_i \leq \mu_i^{-}$.

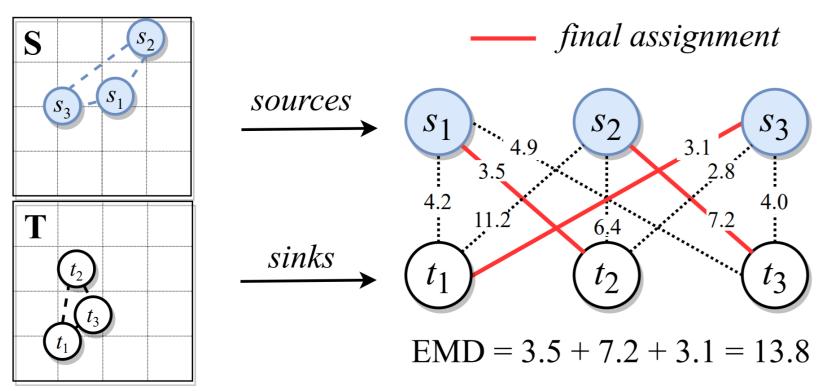


Figure 2: An example illustrates the efficacy of the method.

- **Expression of the Optimization Problem**
 - > EMD(S, T) = $\min_{\Phi:S \to T} \frac{1}{|S|} \sum_{x \in S} ||x \Phi(x)||_2$.
- The Challenges of Computing the Loss Function Using the Auction Algorithm^[1]
 - The number of iterations required for auction algorithm termination \succ is difficult to estimate.
 - For certain point cloud, the number of iterations needed can be \triangleright extremely high.

- Utilized the core of the Successive Shortest Path algorithm (SSPA)^[2] to calculate the proposed initial prices by Lem. 2.
- Optimization Strategies
- Simplified Graph Strategy^[3].
 - > Accelerated computational time cost for calculating initial prices.
- Source Sorted Algorithm (SSA).
 - Optimized the order of local assignment points to enhance the \triangleright effectiveness of the initial price distribution.
- Adaptive iteration Strategy. •
 - > Adapted to deep learning processes to increase the algorithm's robustness to diverse feature point cloud data.

Experimental Results

Methods	chair	table	sofa	cabinet	lamp	car	airplane	watercraft	average
PCN (CD+CD)	62.46	66.88	52.85	61.07	102.88	50.86	38.17	52.22	60.93
PCN (emd_1+CD)	62.83	59.94	52.53	54.91	69.50	54.12	33.22	55.30	55.29
PCN (AAIP+CD)	52.73	49.77	48.21	49.66	62.95	38.15	27.22	44.13	46.60
PCN (CD+AAIP)	43.23	43.54	34.58	35.56	63.55	31.13	25.79	35.96	39.17
MSN (emd ₂)	33.12	31.12	31.11	36.13	36.66	32.90	18.70	25.66	30.68
MSN (AAIP)	28.99	28.25	28.48	34.18	31.53	31.45	16.58	22.58	27.71

Table 1: The training results (EMD×10³) of point cloud completion network on the ShapeNet dataset. We denote the compared methods as emd₁^[4] and emd₂^[5].

