
Efficient and Accurate PageRank Approximation on Large
Graphs
SIYUE WU, Shenzhen University, China

DINGMING WU, Shenzhen University, China

JUNYI QUAN, Shenzhen University, China

TSZ NAM CHAN, Shenzhen University, China

KEZHONG LU, Shenzhen University, China

PageRank is a commonly used measurement in a wide range of applications, including search engines,

recommendation systems, and social networks. However, this measurement suffers from huge computational

overhead, which cannot be scaled to large graphs. Although many approximate algorithms have been proposed

for computing PageRank values, these algorithms are either (i) not efficient or (ii) not accurate. Worse still,

some of them cannot provide estimated PageRank values for all the vertices. In this paper, we first propose

the CUR-Trans algorithm, which can reduce the time complexity for computing PageRank values and has

lower error bound than existing matrix approximation-based PageRank algorithms. Then, we develop the

𝑇 2
-Approx algorithm to further reduce the time complexity for computing this measurement. Experiment

results on three large-scale graphs show that both the CUR-Trans algorithm and the 𝑇 2
-Approx algorithm

achieve the lowest response time for computing PageRank values with the best accuracy (for the CUR-Trans

algorithm) or the competitive accuracy (for the 𝑇 2
-Approx algorithm). Besides, the two proposed algorithms

are able to provide estimated PageRank values for all the vertices.

CCS Concepts: • Theory of computation→ Graph algorithms analysis; Approximation algorithms

analysis.

Additional Key Words and Phrases: Graph Algorithms, Approximation Algorithms, PageRank

ACM Reference Format:

Siyue Wu, Dingming Wu, Junyi Quan, Tsz Nam Chan, and Kezhong Lu. 2024. Efficient and Accurate PageRank

Approximation on Large Graphs. Proc. ACMManag. Data 2, 4 (SIGMOD), Article 196 (September 2024), 26 pages.

https://doi.org/10.1145/3677132

1 Introduction
PageRank was originally proposed to evaluate the importance of the web pages in search en-

gines [12]. It has wide applications in web search engines, social networks [10], recommendation

systems [68], and so on. In general, PageRank is designed to measure the importance of vertices

within the context of the entire graph.

A desired approximate PageRank algorithm should efficiently compute and accurately estimate

PageRank values on large graphs. However, existing approximate PageRank algorithms are either

Authors’ Contact Information: SiyueWu, wusiyue1229@gmail.com, Shenzhen University, China; DingmingWu, dingming@

szu.edu.cn, Shenzhen University, China; Junyi Quan, 2210274031@email.szu.edu.cn, Shenzhen University, China; Tsz Nam

Chan, edisonchan@szu.edu.cn, Shenzhen University, China; Kezhong Lu, kzlu@szu.edu.cn, Shenzhen University, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/9-ART196

https://doi.org/10.1145/3677132

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

https://doi.org/10.1145/3677132
https://doi.org/10.1145/3677132

196:2 Siyue Wu et al.

inefficient or inaccurate. Table 1 compares representative approximate PageRank algorithms. Specif-

ically, iteration algorithms take 𝑂
(
𝑚 · (log𝑛 + log𝛼 𝜏)

)
[20, 63] time on a graph with𝑚 edges and

𝑛 vertices. Since they terminate and return the results when the difference between the PageRank

vectors from the latest two consecutive iterations is below a given threshold 𝜏 , the error bound

is 𝜏 . However, they take 𝑂 (log𝑛 + log𝛼 𝜏) iterations to satisfy the termination condition that is

time-consuming on large graphs. Monte Carlo-based algorithms have to perform 𝑁 = 𝑂

(
𝑛 log𝑛

𝜖2

)
𝛼-random walks to achieve a good relative accuracy with high probability, which is expensive.

Sampling-based algorithms estimate PageRank values based on local graph structures. The time

complexity is determined by the size of the used local graph structure. However, they cannot

provide approximate PageRank values for the vertices outside the local graph structures. Existing

matrix approximation-based algorithms compute low-rank approximation of the transition matrix

of the graph. Although the computation costs on the original transition matrix have been reduced

to the computation costs on the low-rank matrix, the time complexity of constructing low-rank

matrices is high. Moreover, the error bounds of existing matrix approximation-based algorithms

are large.

Table 1. Comparisons of different approximate PageRank algorithms.

Method Algorithm Error bound Time complexity

Iteration

Power iteration algorithm [63]

∥𝜋 − �̃� ∥1 = 𝜏

𝑂 (𝑘 ·𝑚) [20], 𝑘 = 𝑂 (log𝑛 + log𝛼 𝜏)
PMSI [77] unknown

NL1 [3]

𝑂 (𝑑2 · 𝑛 · log2 𝑛+
(𝑑2 log(𝑛/𝑑2 + 1))/𝜏2)

Monte Carlo

Monte Carlo End-point

with Random Start [11] 𝑃 [∥𝜋 − �̃� ∥1 ≤ 𝜖] ≥ 𝑛 −
∑

𝑗 𝑣𝑎𝑟 (�̃� 𝑗)2
𝜖2

,

𝑣𝑎𝑟 (�̃� 𝑗) = 𝑂 (𝜋 𝑗 (1−𝜋 𝑗)
𝑁
), 𝑁 = 𝑂 (𝑛 ·log𝑛

𝜖2
) 𝑂 (𝑛 ·log𝑛

𝛼 ·𝜖2)Monte Carlo Complete Path/

End-point with Cyclic Start [4]

Sampling

ApproxRank [76] ∥𝜋 − �̃� ∥
1
≤ 𝛼

1−𝛼

EXT − ẼXT
1

𝑂 (𝑛 + 𝑘 ·𝑚𝑠) , 𝑘 = 𝑂 (log𝑛𝑠 + log𝛼 𝜏)
Local PageRank algorithms [1, 14] unknown 𝑂 (𝑛 + 𝑘 ·𝑚𝑠) , 𝑘 = 𝑂 (log𝑛𝑠 + log𝛼 𝜏)

Matrix

approximation

Direct sampling in power

iteration (DSPI) [51]

∥𝑇𝑘 −𝑇𝑘 ∥2 ≤ 𝑘𝜂𝜙 ∥𝑇 ∥𝑘
𝐹
, 𝜂 > 0 𝑂 (𝑚 + 𝑘 ·𝑚𝑠) , 𝑘 = 𝑂 (log𝑛𝑠 + log𝛼 𝜏)

Adaptive sampling in power

iteration (ASPI) [51]

∥𝑇𝑘 −𝑇𝑘 ∥2 ≤ 𝜂
𝑎 (1−𝑎𝑘)

1−𝑎 ∥𝑇 ∥
𝑘
𝐹
, 𝜂 > 0 𝑂 (𝑘 ·𝑚 +∑

𝑘𝑚
(𝑘)
𝑠) , 𝑘 = 𝑂 (log𝑛𝑠 + log𝛼 𝜏)

SVD-based PageRank

approximation [7]
∥𝑇 −𝑇 ∥2

𝐹
≤ ∥𝑇 −𝑇𝜌 ∥2𝐹 + 𝜀∥𝑇 ∥2𝐹 [24]

𝑂 (𝜌 · 𝑛2 + (𝑐2 + 𝜌2) · 𝑛 + 𝑐3 + 𝑘 · 𝜌2),
𝑘 = 𝑂 (log 𝜌 + log𝛼 𝜏)

CUR-Trans (ours)

∥𝑇 −𝐶𝑈𝑅∥𝐹 ≤ (1 + 𝜙)∥𝑇 −𝑇𝜌 ∥𝐹 ,
where 𝜙 = 𝜑2 + 2𝜑 , 𝜑 =

√
𝜌 · 𝑐 +

√
𝑐

𝑂 ((𝑐 · 𝑟 + 𝑐2) · 𝑛 + 𝑟 2𝑐 + 𝑟 3 + 𝑐2𝑟 + 𝑐3
+𝑘 · 𝑐2), 𝑘 = 𝑂 (log 𝑐 + log𝛼 𝜏)

𝑇 2
-Approx (ours) ∥𝑇 2 − 𝑋 · 𝑌 ∥𝐹 ≤

√︁
(𝑛 − 𝑐)∥𝑇 ∥2

𝐹
𝑂 (𝑐2 · 𝑛 + 𝑘 · 𝑐2), 𝑘 = 𝑂 (log 𝑐 + log𝛼 𝜏)

Notes: the descriptions of the symbols are available in Table 2.

To tackle the issues, we propose a transformation model that generalizes existing matrix

approximation-based PageRank algorithms. It builds the connection between the low-rank approxi-

mation and the random walk, so that any low-rank approximation algorithm can be incorporated

to estimate PageRank values. Using the transformation model, we propose the CUR-Trans algo-

rithm that estimates PageRank values based on a low-rank approximation of the transition matrix

based on the CUR decomposition [26]. To the best of our knowledge, this is the first work to

consider the CUR decomposition in the PageRank approximation. Comparing with existing matrix

approximation-based PageRank algorithms, our CUR-Trans algorithm has lower time complexity

(Lemma 1) and better error bound (Lemma 3).

Although the low-rank approximate matrix is good at preserving the information in the original

matrix, the time complexity of constructing a low-rank approximate matrix is bounded by the time

complexity of the matrix decomposition algorithm, e.g., the CUR decomposition takes𝑂 (𝑐2 · 𝑟 + 𝑐3)
time [49]. Based on the observation that approximating matrix multiplication [23] takes 𝑂 (𝑐) time

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:3

that is much more efficient than decomposing a matrix, we propose the 𝑇 2
-Approx algorithm that

approximates the multiplication of two transition matrices, i.e.,𝑇 2 ≈ 𝑋 ·𝑌 , and estimates PageRank

values based on the low-rank approximation of 𝑇 2
. The error bound of 𝑇 2

-Approx (Lemma 4) is

similar to that of existing algorithms, whereas the time complexity of 𝑇 2
-Approx (Lemma 5) is

lower than that of existing algorithms and that of the CUR-Trans algorithm.

Finally, extensive experiments are conducted on three large real-world graph datasets to evaluate

the performance of our algorithms. The results show that our algorithms CUR-Trans and𝑇 2
-Approx

are able to provide good estimations on the PageRank values of all the vertices when using small

sampling ratios. They outperform the competitors in terms of the computation time. The error of

CUR-Trans is better than that of 𝑇 2
-Approx, while 𝑇 2

-Approx is more efficient than CUR-Trans.

As a remark, there are also many other studies for utilizing parallel/distributed computation [42,

54, 55, 82] to further accelerate PageRank computation. In this work, we focus on developing

approximate algorithms on single machine setting with CPU. Despite that, the computation time

of our algorithms only takes 100 seconds on graphs with hundreds of millions of vertices and

billions of edges. We leave the combination of our algorithms with parallel/distributed optimization

opportunities in our future work.

To summarize, the main contributions of the paper are as follows:

• We propose a general model, called the transformation model, for estimating PageRank

values based on the low-rank approximation of the transition matrix. It can incorporate any

low-rank approximation algorithm for PageRank approximation.

• We first consider the CUR decomposition in the PageRank approximation and propose the

CUR-Trans algorithm with better error bound.

• We first adopt matrix multiplication approximation to estimate PageRank values and propose

the 𝑇 2
-Approx algorithm with better time complexity.

• Extensive evaluations on large real-world graph datasets demonstrate that our algorithms

significantly outperform the state-of-the-art algorithms.

The rest of the paper is organized as follows : Section 2 reviews existing approximate PageRank

algorithms. Relevant concepts and techniques are provided in Section 3. Section 4 proposes the

transformation model and the CUR-Trans algorithm. The 𝑇 2
-Approx algorithm is presented in

Section 5. Extensive evaluations are conducted in Section 6 and we conclude in Section 7.

2 Related Work
Approximate PageRank algorithms can be classified into the following five categories.

Iterationmethods. Some studies aim to reduce the number of vertices involved in the computation.

The Quadratic Extrapolation algorithm [41] accelerates the convergence of the iteration process

by periodically subtracting estimates of the non-principal eigenvectors from the current iteration.

Based on the observation that many vertices converge to their true PageRank values quickly, while

only a few vertices are slow-converging, the Adaptive PageRank algorithm [39] accelerates the

PageRank computation by removing the converged vertices at each iteration. However, it cannot

guarantee that all vertices can correctly converge.

Some studies convert the PageRank problem into a linear system of equations and investigate

different ways of solving the linear system. Based on the observation that the smaller the damping

factor is, the easier it is to solve the PageRank problem, the inner/outer stationary algorithm [28]

designs inner and outer iterations to solve a linear system with similar algebraic structure to the

original one, but with a lower damping factor. Parameters are carefully chosen to trade off the

numbers of inner and outer iterations and the approximation accuracy. The power-inner–outer (PIO)

iteration algorithm [31] combines the inner/outer stationary algorithm and the power iteration

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:4 Siyue Wu et al.

algorithm. RTSS [78] and PMSI [77] further improve the PIO algorithm by introducing more

parameters to reduce the number of iterations. The GIO algorithm [69] is a general version of the

inner/outer stationary algorithm. Corso et al. [19] rearrange the coefficient matrix of the linear

system to increase the data locality and reduce the number of iterations. For bounded-degree

graphs, the NL1 algorithm [3] converts the PageRank problem into a convex minimization problem

over a unit simplex, and then solve it using iterative methods.

Some studies compute approximate PageRank values based on partitioned graphs. The Block-

Rank algorithm [40] first computes the local PageRank values in each partition and estimates the

importance of each partition. Then, it calculates approximate PageRanks by aggregating the local

PageRank values and the importance of partitions. Algorithms B_LIN and NB_LIN [70] generate 𝑘

graph partitions by using graph partitioning algorithms METIS [43]. Let matrix𝑊1,𝑖 contain the

edges within partition 𝑖 and𝑊2 contain the edges across partitions. The approximate PageRank

values are calculated based on the inverses of the matrices {𝑊1,𝑖 } of 𝑘 partitions and a low-rank

approximation of𝑊2.

Although the above iteration methods can improve the efficiency for computing PageRank values,

these methods can only be applied on an entire graph, which suffer from high computation cost for

large-scale graphs. Compared with these methods, our methods perform iterations on a low-rank

approximate matrix, which can be more scalable to support very large graphs.

Monte Carlomethods. This type of method calculates approximate PageRank values by simulating

random walks on the graph. The end-point with random start algorithm [11] simulates 𝑠 runs of the

random walk initiated at a randomly chosen vertex. The PageRank value of a vertex is estimated

by the fraction of the random walks that end at it. The estimation accuracy is determined by the

number of random walks. To reduce the variance of the estimation, the end-point with cyclic start

algorithm [4] simulates 𝑠 · 𝑛 runs of the random walk initiated at each vertex 𝑠 times. For same

purpose, the complete path algorithms [4] simulate the random walk 𝑠 times from each vertex

and estimates the PageRank value of vertex 𝑣 based on the total number of visits to 𝑣 . The Push

algorithm [17] can be regarded as a de-randomized version of the Monte Carlo method. Each vertex

has a residual value 𝑟 and a PageRank value 𝑝 . In each iteration, each vertex passes an amount of 𝑟

to its neighbours and stores the rest amount of 𝑟 in its own 𝑝 . Finally, for each vertex, the value of

𝑝 is taken as the PageRank value.

Even though variousMonte Carlo methods have been proposed in the literature, all these methods

have to undergo a large number of iterations in order to achieve a relatively good accuracy with

high probability. As such, these methods cannot be scalable to large graphs.

Sampling-based methods. The sampling-based algorithms estimate PageRank values based on

sampled subgraphs. The local PageRank algorithm [14] expands a small subgraph around the target

vertex and uses this subgraph as the basis for the estimation of the PageRank value. Bar-Yossef

and Mashiach [1] improve the local PageRank algorithm by a pruning technique that removes the

vertices with small influence in each iteration. ApproxRank [76] computes approximate PageRank

values on a subgraph. It represents the set of vertices outside the subgraph with an external vertex

Λ and extends the subgraph with links to Λ. Then, random walks are conducted on the modified

transition matrix with respect to Λ.
Although sampling-based methods are efficient for approximately computing PageRank values

of sampling vertices, these methods cannot find the PageRank values of those vertices that are

not inside the sample set. Compared with these methods, our method can estimate the PageRank

values of all vertices.

Matrix approximation-based methods. This type of methods estimates PageRank values based

on low-rank approximation of the transition matrix. Benczúr et al. [7] construct a low-rank approx-

imate matrix based on the linear time SVD decomposition [24]. Liu et al. [51] construct low-rank

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:5

approximate matrices by conducting element-wise matrix sampling. They propose two algorithms.

The Direct Sampling in Power Iteration (DSPI) constructs one approximate matrix. The Adpa-

tive Sampling in Power Iteration (ASPI) adaptively adjusts the sampling rate to construct a new

approximate matrix in each iteration.

The above studies use specific ways to produce low-rank approximate transition matrices. We

propose a general model that can incorporate any low-rank approximation algorithm and a new

efficient algorithm for generating a low-rank approximation of the transition matrix.

Personalized PageRank methods. Personalized PageRank (PPR) [15, 50, 59, 72] is a variant of

PageRank, which computes the importance of vertices with respect to a specific vertex or seed set

of vertices. The PPR values of the vertices can be used to derive the global PageRank values [73].

Specifically, given a graph with 𝑛 vertices, let 𝜋 (𝑠, 𝑡) be the PPR value of vertex 𝑡 w.r.t. vertex 𝑠 ,

which denotes the probability that an 𝛼-random walk starting from vertex 𝑠 terminates at vertex

𝑡 . The global PageRank value of vertex 𝑡 is calculated as 𝜋𝑡 =
∑𝑛

𝑠=1 𝜋 (𝑠, 𝑡)/𝑛 where the PPR value

of vertex 𝑡 w.r.t. any vertex 𝜋 (·, 𝑡) can be obtained by issuing a single target PPR query. The time

complexity of the best known single target PPR algorithm is 𝑂

(
𝜋 (𝑡) ·𝑛 log𝑛

𝛼𝜖

)
[50]. Then, it takes

𝑂

(
𝜋 (𝑡) ·𝑛2

log𝑛

𝛼𝜖

)
time to calculate the global PageRank values of all the vertices by calling the PPR

algorithm, which is not a practical solution on large graphs.

3 Preliminaries
This section presents important concepts of PageRank and relevant techniques used in the proposed

algorithms. Table 2 lists the symbols used in the paper.

PageRank. Given a graph 𝐺 = (𝑉 , 𝐸), |𝑉 | = 𝑛, |𝐸 | =𝑚, let 𝑇 be its transition matrix and outdeg(𝑖)
be the out-degree of vertex 𝑣𝑖 . In 𝑇 , if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸, 𝑇𝑖, 𝑗 = 1/outdeg(𝑖), otherwise, 𝑇𝑖, 𝑗 = 0. According

to the surfer model of web browsing [47], in a graph consisting of pages and links, a web surfer

randomly opens a page. He jumps to any linked page according to the transition matrix 𝑇 with 𝛼

probability and jumps to any unlinked page with 1−𝛼 probability, where 𝛼 is called damping factor

and is often set to 0.85. Eventually, page browsing will have a stationary distribution 𝜋 , which

contains the PageRank values of all the pages. It indicates the likelihood of each page being visited.

Equation 1 shows the formulation of PageRank [63].

𝜋 =

(
𝛼 ·𝑇 + (1 − 𝛼) · [1

𝑛
]𝑛×𝑛

)
· 𝜋. (1)

Based on simple mathematical derivations, the PageRank vector 𝜋 is shown as follows [8]:

𝜋 = (1 − 𝛼) ·
(∞∑︁
𝑘=0

𝛼𝑘𝑇𝑘

)
· 𝜋0, (2)

where 𝜋0 = [1𝑛]𝑛×1 is the initial PageRank vector.

The PageRank vector 𝜋 is usually computed using the power iteration method [8, 34, 63]. Given

a termination threshold 𝜏 , the power iteration method computes

𝜋 (𝑘+1) = 𝛼 ·𝑇 · 𝜋 (𝑘) + (1 − 𝛼) · 𝜋0, (3)

until ∥𝜋 (𝑘+1) − 𝜋 (𝑘) ∥2 < 𝜏 .

Euclidean norm based sampling probability. Given a matrix 𝑇 , the Euclidean norm [35] of

columns 𝑗 in 𝑇 is calculated as

√︁∑𝑛
𝑖=1 |𝑇𝑖, 𝑗 |2 and the Euclidean norm of row 𝑖 in 𝑇 is calculated as√︃∑𝑛

𝑗=1 |𝑇𝑖, 𝑗 |2. In a matrix, there are three kinds of sampling probability distributions based on the

Euclidean norms of columns and rows [23]:

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:6 Siyue Wu et al.

Table 2. Symbols.

Symbols Description

𝑇 , 𝑇𝑛×𝑛 Transition matrix.

𝑇 A low-rank approximation of 𝑇 .

𝐺 , 𝐺𝑇
Graph, transformed graph.

𝑉 Vertex set.

𝐸 Edge set.

𝑛,𝑚 The number of vertices, the number of edges.

𝜌 Matrix rank.

𝑐
The number of sampled columns.

Also the number of vertices in the transformed graph.

𝑟 The number of sampled rows.

𝜋 , �̃� PageRank vector, approximate PageRank vector.

𝜋0 Initial PageRank vector.

𝛼 The damping factor.

∥𝑥 ∥2 The Euclidean norm of a vector 𝑥 , ∥𝑥 ∥2 =
√︃∑

𝑥2
𝑖
.

∥𝑇 ∥𝐹 The Forbenius norm of a matrix 𝑇 , ∥𝑇 ∥𝐹 =

√︃∑
𝑖

∑
𝑗 𝑥

2

𝑖, 𝑗
.

[1
𝑛
]𝑛 A column vector of size 𝑛 × 1.

𝑘 The number of iterations.

𝑚𝑠 The number of edges in a sampled graph.

𝑛𝑠 The number of vertices in a sampled graph.

𝑚
(𝑘)
𝑠 The number of edges in a sampled graph at the 𝑘 th iteration.

𝑑
The maximum number of non-zero elements

in a row or column.

EXT (ẼXT)
The vector containing the accurate (approximate)

PageRank values of the external vertices of subgraph.

𝜖 An error.

𝜏 The termination threshold in the iteration method.

• The Euclidean norm square of column probability distribution F (𝑝𝑐): the probability of

selecting column 𝑗 .

𝑝𝑐𝑗 =

∑𝑛
𝑖=1 |𝑇𝑖, 𝑗 |2∑𝑛

𝑘=1

∑𝑛
𝑖=1

��𝑇𝑖,𝑘 ��2 (4)

• The Euclidean norm square of row probability distribution F (𝑝𝑟): the probability of selecting
row 𝑖 .

𝑝𝑟𝑖 =

∑𝑛
𝑗=1 |𝑇𝑖, 𝑗 |2∑𝑛

𝑘=1

∑𝑛
𝑗=1

��𝑇𝑘,𝑗 ��2 (5)

• The Euclidean norm of column and row probability distribution F (𝑝cr): the probability of

simultaneously selecting column 𝑖 and row 𝑖 .

𝑝cr𝑖 =

√︃∑𝑛
𝑗=1𝑇

2

𝑗,𝑖

√︃∑𝑛
𝑗=1𝑇

2

𝑖, 𝑗∑𝑛
𝑘=1

[√︃∑𝑛
𝑗=1𝑇

2

𝑗,𝑘

√︃∑𝑛
𝑗=1𝑇

2

𝑘,𝑗

] (6)

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:7

Low-rank approximation. Given a matrix𝑇 and a rank 𝜌 , low-rank approximation aims to find a

matrix𝑇𝜌 whose rank is 𝜌 , such that ∥𝑇 −𝑇𝜌 ∥ is minimized. Matrix𝑇𝜌 is a rank-𝜌 approximation of

𝑇 [27]. Matrix decomposition algorithms such as SVD [49] and CUR [26] can be used to construct

low-rank approximate matrices. If a matrix 𝑇 can be decomposed using the SVD, i.e., 𝑇 = 𝑈 Σ𝑉𝑇
, a

rank-𝜌 approximation of 𝑇 can be constructed based on the first 𝜌 singular vectors and singular

values, i.e., 𝑇𝜌 = 𝑈𝑛×𝜌Σ𝜌×𝜌𝑉𝑇
𝜌×𝑛 [13, 29]. The CUR decomposition can also be used to construct a

rank-𝜌 approximate matrix, i.e., 𝑇𝜌 = 𝐶𝑈𝜌𝑅, where the rank of𝑈𝜌 is 𝜌 .

4 Transformation-based Method
We introduce the transformation model in Section 4.1. Sections 4.2 and 4.3 present the CUR-Trans

algorithm and its error bound, respectively.

4.1 Transformation Model
According to the power iteration method for PageRank computation (Equation 2), performing

𝑘 iteration steps can be considered as 𝑘-step random walks on graph 𝐺 . To efficiently calculate

the PageRank values of the vertices in 𝐺 , we propose the transformation model that converts the

random walks on a large graph 𝐺 to the random walks on a small transformed graph 𝐺𝑇
.

Specifically, the transformation model first decomposes𝑇𝑛×𝑛 into two matrices, such that𝑇𝑛×𝑛 ≈
𝐴𝑛×𝑐 · 𝐵𝑐×𝑛 , 𝑐 ≪ 𝑛. Then, it constructs a transformed graph 𝐺𝑇

with 𝑐 vertices by considering

the transition matrix 𝐷𝑐×𝑐 with small size (as 𝑐 is small), where 𝐷𝑐×𝑐 = 𝐵𝑐×𝑛 · 𝐴𝑛×𝑐 . Next, the
initial PageRank vector 𝜋0 of the original graph is transformed into a vector 𝜋𝑇 using matrix 𝐵.

Vector 𝜋𝑇 is taken as the initial PageRank vector of the transformed graph𝐺𝑇
. Then, a traditional

PageRank algorithm is applied on the transformed graph𝐺𝑇
and we obtain the PageRank values of

the 𝑐 vertices in 𝐺𝑇
. Lastly, the PageRank vector of the transformed graph is converted back to the

PageRank vector of the original graph𝐺 using matrix 𝐴. Figure 1 shows the working processing of

the transformation model.

Large
original
graph
𝐺

Small
transformed

graph
𝐺!

Transformation 𝐵

Transformation 𝐴 PageRank
calculation

Approximate
PageRank
values 1

3
2

4

𝜋"

𝜋!%𝜋

Fig. 1. Transformation model.

Correctness. Below, we prove the correctness of the transformation model by converting the

original equation of PageRank (Equation 2) based on 𝑇 into the formula based on 𝐷 .

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:8 Siyue Wu et al.

Given 𝑇𝑛×𝑛 ≈ 𝐴𝑛×𝑐 · 𝐵𝑐×𝑛 and 𝐷𝑐×𝑐 = 𝐵𝑐×𝑛 · 𝐴𝑛×𝑐 , we have

𝜋 = (1 − 𝛼) ·
(∞∑︁
𝑘=0

𝛼𝑘𝑇𝑘

)
· 𝜋0 ≈ (1 − 𝛼) ·

(∞∑︁
𝑘=0

𝛼𝑘 (𝐴 · 𝐵)𝑘
)
· 𝜋0

= (1 − 𝛼) · 𝜋0 + (1 − 𝛼) ·
(∞∑︁
𝑘=1

𝛼𝑘𝐴 · (𝐵 · 𝐴)𝑘−1 · 𝐵
)
· 𝜋0

= (1 − 𝛼) · 𝜋0 +𝐴 · 𝛼 (1 − 𝛼) ·
(∞∑︁
𝑘=1

𝛼𝑘−1𝐷𝑘−1

)
· 𝐵 · 𝜋0

= (1 − 𝛼) · 𝜋0 + 𝛼 · 𝐴 · (1 − 𝛼) ·
(∞∑︁
𝑘 ′=0

𝛼𝑘
′
𝐷𝑘 ′

)
𝜋𝑇 , (7)

where 𝑘 ′ = 𝑘 − 1 and 𝜋𝑇 = 𝐵 · 𝜋0 that is a vector of size 𝑐 × 1. Equation 2 means that taking 𝜋0
as the initial PageRank vector, 𝑘-step random walks are performed based on transition matrix 𝑇 .

The underlined part in Equation 7 means that taking 𝜋𝑇 as the initial PageRank vector, 𝑘 ′-step
random walks are performed based on transition matrix 𝐷 . The result of the underlined part in

Equation 7 is the PageRank values in the transformed graph 𝐺𝑇
and is transformed back to the

PageRank vector of size 𝑛 × 1 by multiplied by matrix 𝐴.

The transformation model generalizes existing matrix approximation based PageRank algo-

rithms [7, 51]. One can adopt different matrix decomposition algorithms to construct the matrices

𝐴 and 𝐵 in the transformation model. However, the exact SVD algorithm takes𝑂 (𝑛3) time for 𝑛 ×𝑛
matrices [49]. Well-known scalable SVD algorithms are approximate algorithms, listed in Table 3.

Nevertheless, most of these matrix decomposition approximate algorithms are either inefficient

or only applicable to specific types of matrices. According to Table 3, CUR is more efficient than

the other matrix decomposition algorithms. Thus, we propose the CUR-based transformation that

finds an approximate solution of 𝑇 ≈ 𝐴 · 𝐵 in the next section. Then, the outputs of the CUR-based

transformation are approximate PageRank values.

Table 3. Time complexity of different matrix decomposition algorithms.

Algorithm Time complexity Requirements

QR [52] 𝑂 (𝑛3) [80] Invertible matrix

LU/PLU [64] 𝑂 (𝑛3/3) [53] Invertible matrix

EVD [81] 𝑂 (𝑛3) [45] Square matrix

Nyström [46] 𝑂 ((𝑐 · 𝜌) · 𝑛 + 𝑐3) [48] Symmetric and

positive definite matrix

Full Rank [65] 𝑂 (𝑛2) [6] Non-invertible matrix

SVD [30] 𝑂 (𝑛3) [49] None

Truncated SVD [44] 𝑂 (𝑟 · 𝑛2) None

LinearTime SVD [24] 𝑂 (𝑐2 · 𝑛 + 𝑐3) None

ConstantTime SVD [24] 𝑂 (𝑐3 + 𝑐 · 𝑟 2) None

Randomized SVD [60] 𝑂 (𝑛2𝑙𝑜𝑔(𝑛) + 𝑟 3) None

CUR [22] 𝑂 (𝑐2 · 𝑟 + 𝑐3) [26, 49] None

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:9

4.2 CUR-based Transformation
We propose the CUR-Trans algorithm that is based on the CUR decomposition to construct the

transformed graph mentioned in the previous section and calculates approximate PageRank values.

Algorithm 4.1 shows the pseudo code of algorithm CUR-Trans. It first constructs matrix 𝐶𝑛×𝑐 by
sampling 𝑐 columns from 𝑇 with replacement from the Euclidean-norm of column probability

distribution, i.e., Equation 4 (line 1). Then, it constructs matrix 𝑅𝑟×𝑛 by sampling 𝑟 rows from 𝑇

with replacement from the Euclidean-norm of row probability distribution, i.e., Equation 5 (line

2). Line 3 calculates matrix𝑊 by taking the intersection of matrices 𝑅 and 𝐶 . Next, it computes a

rank-𝑥 approximation of𝑈 based on𝑊 , denoted as �̃� (line 4). Deriving matrix �̃� is a standard step

in the CUR decomposition. Specifically, if𝑊 can be decomposed, matrix𝑈 is the Moore–Penrose

pseudo inverse of𝑊 and �̃� is the low-rank approximation matrix of𝑈 by taking the first 𝑥 singular

values of 𝑈 . So far, the transition matrix 𝑇 is decomposed into three matrices based on the CUR

decomposition, i.e., 𝑇𝑛×𝑛 ≈ 𝐶𝑛×𝑐 · �̃�𝑐×𝑟 · 𝑅𝑟×𝑛 . After that, we set 𝐴← 𝐶 , 𝐵 ← �̃� · 𝑅, and 𝐷 ← 𝐵 ·𝐴
(line 5). Then, the PageRank vector 𝜋0 of size 𝑛 × 1 is initialized as

[
1

𝑛

]
𝑛
and is transformed into a

vector �̃�𝑇 of size 𝑐 × 1 using matrix 𝐵 (line 6). Next, the traditional PageRank algorithm such as the

power iteration algorithm is applied and the PageRank vector �̃�
(𝑘)
𝑇

of the transformed graph 𝐷 is

obtained (lines 7–10). In the end, vector �̃�
(𝑘)
𝑇

is transformed back to a vector of size 𝑛 × 1 using
matrix 𝐴 (line 11). After normalization, vector �̃� contains the approximate PageRank values in

the original graph 𝐺 and is returned (lines 12 and 13). Note that, it is equivalent to set 𝐴← 𝐶 · �̃� ,

𝐵 ← 𝑅 at line 5 and all results of CUR-Trans hold.

Algorithm 4.1 CUR-Trans

Input: The transition matrix 𝑇 of graph 𝐺 containing 𝑛 vertices, the number of sampled columns

𝑐 , the number of sampled rows 𝑟 , termination threshold 𝜏 , the damping factor 𝛼 .

Output: Approximate PageRank values �̃� of 𝐺 .

1: Construct 𝐶 by sampling 𝑐 columns from 𝑇 with replacement based on the probability {𝑝𝑐𝑗 }𝑛𝑗=1
in Equation 4;

2: Construct 𝑅 by sampling 𝑟 rows from 𝑇 with replacement based on the probability {𝑝𝑟𝑖 }𝑛𝑖=1 in
Equation 5;

3: 𝑊 ← 𝑅 ∩𝐶;
4: �̃� ← get a rank-𝑥 approximation of𝑈 based on𝑊 ;

5: 𝐴← 𝐶 , 𝐵 ← �̃� · 𝑅, 𝐷 ← 𝐵 · 𝐴;
6: 𝜋0 ←

[
1

𝑛

]
𝑛
, �̃�
(0)
𝑇
← 𝐵 · 𝜋0, 𝑘 ← 0;

7: repeat

8: 𝑘 ← 𝑘 + 1;
9: �̃�

(𝑘)
𝑇
← 𝛼 · 𝐷 · �̃� (𝑘−1)

𝑇
+ (1 − 𝛼) · [1

𝑐
]𝑐 ;

10: until ∥�̃� (𝑘)
𝑇
− �̃� (𝑘−1)

𝑇
∥2 < 𝜏

11: �̃� = (1 − 𝛼) · 𝜋0 + 𝛼 · 𝐴 · �̃� (𝑘)𝑇
;

12: �̃� ← normalizing �̃� ;

13: return �̃� ;

Example 1. Figure 2 demonstrates the process of algorithm CUR-Trans using an example

graph. The original graph𝐺 contains 10 vertices. Matrix𝐶 is constructed by the 4 sampled columns

1, 5, 6, 8 (yellow columns) in 𝑇 . Matrix 𝑅 is constructed by the 4 sampled rows 6, 7, 8, 9 (green

rows) in 𝑇 . Then, matrices𝑊 and �̃� are calculated. According to algorithm CUR-Trans, matrix 𝐶

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:10 Siyue Wu et al.

0 0 0 0.33 0 0.33 0.33 0 0 0
0 0 0 0 0.25 0 0.25 0.25 0 0.25
0 0.50 0 0 0 0 0 0 0.50 0
0 0.25 0 0 0.25 0 0.25 0 0.25 0

0.25 0 0.25 0 0 0.25 0 0 0.25 0
0 0 0 0 1.00 0 0 0 0 0
0 0 0 0 0.25 0.25 0 0.25 0 0.25
0 0.20 0 0.20 0.20 0 0 0 0.20 0.20

0.20 0.20 0.20 0 0 0.20 0 0.20 0 0
0 0.50 0 0 0 0 0 0.50 0 0

Original
graph

Approximate PageRank vector
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

0.09 0.10 0.09 0.01 0.31 0.16 0.00 0.16 0.01 0.08

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

S1 S2 S3 S4
0.03 0.09 0.05 0.04

𝑇 =
0 0 0.33 0
0 0.25 0 0.25
0 0 0 0
0 0.25 0 0

0.25 0 0.25 0
0 1.00 0 0
0 0.25 0.25 0.25
0 0.20 0 0

0.20 0 0.20 0.20
0 0 0 0.50

𝐶 =

0 0 0 0 1.00 0 0 0 0 0
0 0 0 0 0.25 0.25 0 0.25 0 0.25
0 0.2 0 0.2 0.2 0 0 0 0.2 0.2

0.2 0.2 0.2 0 0 0.2 0 0.2 0 0
𝑅 =

0 1 0 0
0 0.25 0.25 0.25
0 0.2 0 0

0.2 0 0.2 0.2

𝑊 =

0.96 -4.00 0.19 5
0.96 0 0.19 0
-0.48 2.00 -0.10 0
-0.48 2.00 -0.10 0

&𝑈 =

1 1.04 1 0.04 0 0 0 0 0.04 -0.96
0 0.04 0 0.04 1 0 0 0 0.04 0.04
0 -0.02 0 -0.02 0 0.5 0 0.5 -0.02 0.48
0 -0.02 0 -0.02 0 0.5 0 0.5 -0.02 0.48

𝐵 = &𝑈𝑅 =

0 0 0.33 0
0 0.25 0 0.25
0 0 0 0
0 0.25 0 0

0.25 0 0.25 0
0 1.00 0 0
0 0.25 0.25 0.25
0 0.20 0 0

0.20 0 0.20 0.20
0 0 0 0.50

𝐴 = 𝐶 =

𝐺 𝜋!
Transformed

graph

𝐺!

S1 S2 S3 S4
0.45 0.12 0.10 0.12

+𝜋!

0.01 0.27 0.34 -0.21
0.26 0.02 0.26 0.04

0 0.59 0 0.23
0 0.59 0 0.23

𝐷 = 𝐵𝐴 =

+𝜋

(1)

(2) (3)

(5)

(6)
(7)

(4)

+𝜋!

Fig. 2. CUR-based transformation.

is taken as the transformation matrix 𝐴 and transformation matrix 𝐵 is calculated as �̃� · 𝑅. Then,
the transformed graph 𝐺𝑇

with transition matrix 𝐷 = 𝐵 · 𝐴 is constructed, as shown in the figure.

Next, the PageRank values of the 10 vertices in 𝐺 are initialized as 0.1. The PageRank vector 𝜋0 of

𝐺 is converted into the PageRank vector �̃�𝑇 of the transformed graph𝐺𝑇
using matrix 𝐵. Then, the

power iteration algorithm is applied and the PageRank values of the 4 vertices in the transformed

graph are obtained. Finally, the approximate PageRank values of the 10 vertices in the original

graph 𝐺 are derived by transforming the PageRank vector �̃�𝑇 back using matrix 𝐴.

Discussion. In the CUR-Trans algorithm, the transition matrix 𝑇 is decomposed using modified

CUR decomposition that differs from the traditional CUR decomposition as follows:

(i) Traditional CUR decomposition conducts sampling using the distribution based on T-singular

vectors that achieves better theoretical error bound [26, 56]. However, the traditional CUR decompo-

sition is inefficient because the T-singular vectors are derived based on the SVD decomposition. Our

algorithm based on the Euclidean norm of column and row probability distributions (Equations 4

and 5) has a slightly larger error bound (Lemma 3), but improves the efficiency by avoiding this

expensive SVD decomposition.

(ii) For each sampled column and row, the traditional CUR decomposition performs a scaling

operation that divides each element in the column and the row by

√︁
𝑐 · 𝑝𝑐

𝑖
and

√︁
𝑟 · 𝑝𝑟

𝑖
, respectively.

The purpose of applying the scaling operation in the traditional CUR is to get a better theoretical

error bound for the matrix decomposition [22, 25, 26]. We are the first to adopt the CUR decom-

position for PageRank estimation and we found that applying scaling operation cannot produce

better estimated results and is time-consuming. The transformed graph preserves the important

information embedded in the original graph. Applying the scaling operation on the transformed

graph is equivalent to changing the edge weights, so that it may result in inaccurate estimation.

Thus, our algorithm does not use the scaling operation.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:11

(iii) In the traditional CUR decomposition, matrix 𝑈 is the Moore-Penrose pseudo-inverse of𝑊 .

Specifically, matrix𝑊 is firstly decomposed by the SVD decomposition, i.e.,𝑊 = 𝐻 · Σ ·𝑉𝑇
. Then,

matrix𝑈 is calculated as𝑈 = 𝑉 ·Σ−1 ·𝐻𝑇
. However, the SVD decomposition is time-consuming when

matrix𝑊 is large. To reduce the computational cost, the modified CUR decomposition approximates

𝑈 by taking the first 𝑥 singular values and singular vectors of𝑊 (line 4 in the CUR-Trans algorithm),

i.e.,𝑈 ≈ �̃� = 𝑉𝑥 · Σ−1𝑥 · 𝐻𝑇
𝑥 .

Below, we explain the effectiveness of the rank-𝑥 approximation of𝑈 . Given a desired rank 𝜌 , by

setting 𝑐 = 𝑟 = 𝑂 (𝜌 · log(𝜌)) according to Lemma 3, matrix CUR is a low-rank approximation of 𝑇 .

The rank of CUR is usually much higher than the desired rank 𝜌 . Figure 3 shows the desired rank 𝜌

and the rank of CUR on dataset Orkut that is used in the experiment. Thus, it is unnecessary to

spend computational cost on the SVD decomposition of𝑊 . Given the desired rank 𝜌 , according to

𝑐 = 𝑟 = 𝑂 (𝜌 · log(𝜌)), we set 𝑥 =
√
𝑐 . Then, matrix �̃� is a low-rank approximation of𝑈 . Thus, the

rank of matrix CŨR is log 𝑐 . As shown in Figure 3, on dataset Orkut, the rank of CŨR matches the

desired rank 𝜌 perfectly. Hence, the modified CUR decomposition efficiently computes a rank-𝜌

approximation of 𝑇 .

Rank of 𝐶𝑈𝑅Desired rankRank of 𝐶$𝑈𝑅

Fig. 3. Effectiveness of rank-𝑥 approximation of𝑈 .

Lemma 1. The time complexity of the CUR-Trans algorithm is 𝑂 ((𝑐2 + 𝑐 · 𝑟) · 𝑛 + 𝑐2 · (log 𝑐 +
log𝛼 𝜏) + 𝑐2 · 𝑟 + 𝑐3), where 𝑐, 𝑟 ≪ 𝑛.

Proof. The computational cost of the CUR-Trans algorithm is dominated by three phases. In

the first phase, constructing matrices𝐶 , 𝑅 and𝑊 takes𝑂 (𝑟 + 𝑐) time (lines 1–3). According to [49],

constructing matrix𝑈 takes 𝑂 (𝑐2 · 𝑟 + 𝑐3 + 𝑐 · (𝑐 · 𝑟 + 𝑟)) time. Then, constructing matrix �̃� (line

4) takes 𝑂 (𝑐2 · 𝑟 + 𝑐3 + 𝑥 · (𝑐 · 𝑟 + 𝑟)) = 𝑂 (𝑐2 · 𝑟 + 𝑐3), since 𝑥 =
√
𝑐 . In the second phase (lines

5 and 6), constructing matrices 𝐴, 𝐵, and 𝐷 takes 𝑂 (𝑐2 · 𝑛 + 𝑐 · 𝑟 · 𝑛) time. Since the number 𝑘

of iterations needed on matrix 𝑇𝑛×𝑛 is 𝑂 (log𝑛 + log𝛼 𝜏) [63], the number of iterations needed on

the transformed graph is 𝑂 (log 𝑐 + log𝛼 𝜏). Given that the time complexity of the power iteration

method on a graph having𝑚 edges is𝑂 (𝑘 ·𝑚) [61, 62], we derive that the third phase (lines 10–13)

takes 𝑂 (𝑐2 · (log 𝑐 + log𝛼 𝜏)) time to compute the PageRank values in the transformed graph, since

the number of edges in the transformed graph is bounded by 𝑐2. Overall, the time complexity of

the CUR-Trans algorithm is𝑂 (𝑐2 · 𝑛 + 𝑐 · 𝑟 · 𝑛 + 𝑐2 · (log 𝑐 + log𝛼 𝜏) + 𝑐2 · 𝑟 + 𝑐3), where 𝑐, 𝑟 ≪ 𝑛. □

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:12 Siyue Wu et al.

4.3 Error Bound
How to analyze error bound for matrix approximation-based PageRank algorithms? Con-

sider previous algorithms [7, 51] that compute approximate PageRank values �̃� using approximate

transition matrices 𝑇 . In their analysis, the error of the approximate PageRank vector ∥𝜋 − �̃� ∥2 is
bounded by the error of the 𝑘 th power of the approximate matrix ∥𝑇𝑘 −𝑇𝑘 ∥𝐹 , i.e.,

∥𝜋 − �̃� ∥2 ≤ (1 − 𝛼) ·
(∞∑︁
𝑘=1

𝛼𝑘 ∥𝑇𝑘 −𝑇𝑘 ∥𝐹

)
·
[1𝑛]𝑛𝐹 . (8)

However, the bounds derived based on ∥𝑇𝑘 −𝑇𝑘 ∥𝐹 are large, as shown in Table 1. Based on the

observation that matrix 𝑇𝑘
has the property that the sum of each row is 1, we present Lemma 2

that bounds ∥𝑇𝑘 −𝑇𝑘 ∥𝐹 using ∥𝑇 −𝑇 ∥𝐹 as follows.

Lemma 2. Given two transition matrices 𝑇 and 𝑇 of the same size 𝑛 × 𝑛,
∥𝑇𝑘 −𝑇𝑘 ∥𝐹 ≤ 𝑘 ·

√
𝑛 · ∥𝑇 −𝑇 ∥𝐹 .

The proof is available in the supplementary material.

According to Equation 8 and Lemma 2, we have

∥𝜋 − �̃� ∥2 ≤ (1 − 𝛼) ·
(∞∑︁
𝑘=1

𝑘 · 𝛼𝑘
)
·
√
𝑛 · ∥𝑇 −𝑇 ∥𝐹 ·

[1𝑛]𝑛𝐹
=

𝛼

1 − 𝛼 ·
√
𝑛 · ∥𝑇 −𝑇 ∥𝐹 ·

[1𝑛]𝑛𝐹 . (9)

Then, given a matrix approximation-based PageRank algorithm, one just needs to derive the

bound of ∥𝑇 −𝑇 ∥𝐹 , so that the error of the estimated PageRank vector is bounded. According to

Equation 9, the error bound is independent of the number of iterations 𝑘 .

Error bound of CUR-Trans. Since we use the modified CUR decomposition in the CUR-Trans

algorithm, the error bound of the traditional CUR decomposition can not be applied. Below, we

provide the error bound of the CUR-Trans algorithm in Lemma 3.

Lemma 3. Given a graph 𝐺 , let 𝑇 be its transition matrix. Given 𝜌 (≤ rank(𝑇)), let 𝑇𝜌 be the
optimal 𝜌-rank approximation of 𝑇 . If algorithm CUR-Trans sets the number of sampled columns and
rows as 𝑐 = 𝑟 = 𝑂 (𝜌 · log(𝜌)), we have

Pr
(
∥𝑇 −𝐶𝑈𝑅∥𝐹 ≤ (1 + 𝜙)∥𝑇 −𝑇𝜌 ∥𝐹

)
≥ 0.81, (10)

where 𝜙 = 𝜑2 + 2𝜑 , 𝜑 =
√
𝜌 · 𝑐 +

√
𝑐 .

The proof is available in the supplementary material.

Discussion. The error bound [26] of the traditional CUR decomposition is: given 0 < 𝜖 < 1 and

𝑐 = 𝑟 = 𝑂 ((𝜌 log(𝜌))/𝜖2),
Pr

(
∥𝑇 − CUR∥𝐹 ≤ (1 + 𝜖)∥𝑇 −𝑇𝜌 ∥𝐹

)
≥ 0.49. (11)

Although the error bound of the CUR-Trans algorithm (Equation 10) is larger than that of the

traditional CUR decomposition (Equation 11), the probability of the bound of the CUR-Trans

algorithm is higher.

We proceed to compare the error bound of the CUR-Trans algorithm with that of existing matrix

approximation-based algorithms listed in Table 1. According to Lemma 2 and simple mathematical

derivations, we have ∥𝑇𝑘 − (𝐶𝑈𝑅)𝑘 ∥2 < ∥𝑇𝑘 − (𝐶𝑈𝑅)𝑘 ∥𝐹 < 𝑘
√
𝑛∥𝑇 −𝐶𝑈𝑅∥𝐹 . Based on Equation 10,

we have ∥𝑇𝑘 − (𝐶𝑈𝑅)𝑘 ∥2 < 𝑘
√
𝑛(1 + 𝜙)∥𝑇 −𝑇𝜌 ∥𝐹 . Considering the error bounds of DSPI and ASPI

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:13

in Table 1, their bounds are based on ∥𝑇 ∥𝑘
𝐹
, ∥𝑇 ∥𝐹 ≤ 1 that is larger than our bound based on

∥𝑇 − 𝑇𝜌 ∥𝐹 . Considering the SVD-based PageRank approximation algorithm in Table 1, because

𝜀 > 1,

(
∥𝑇 −𝑇𝜌 ∥2𝐹 + 𝜀∥𝑇 ∥2𝐹

)
1/2

> (∥𝑇 −𝑇𝜌 ∥𝐹 + ∥𝑇 ∥𝐹)/
√
2 and ∥𝑇 −𝑇𝜌 ∥𝐹 < ∥𝑇 ∥𝐹 , we have (∥𝑇 −

𝑇𝜌 ∥𝐹 + ∥𝑇 ∥𝐹)/
√
2 < (1 + 𝜙)∥𝑇 −𝑇𝜌 ∥𝐹 . Therefore, its error bound is larger than our bound.

5 𝑇 2-Approximation Method
This section explains the weakness of existing matrix approximation-based method in Section 5.1.

Sections 5.2 and 5.3 present the 𝑇 2
-Approx algorithm and its error bound, respectively.

5.1 Motivation
According to the equation for computing the PageRank vector (Equation 2), calculating𝑇𝑘

dominates

the time cost of the PageRank computation. The time complexity of calculating 𝑇𝑘
is 𝑂 (𝑘 · 𝑛3) [18,

33, 75]. Existing matrix approximation-based method [7] reduces the time complexity to 𝑂 (𝑘 · 𝑐3)
by converting the multiplication of matrix 𝑇 of size 𝑛 × 𝑛 to the multiplication of a small matrix of

size 𝑐 × 𝑐 , where 𝑐 ≪ 𝑛. Specifically, it approximates 𝑇 by a low-rank matrix 𝑇 via decomposing 𝑇

into two matrices 𝑋 and 𝑌 , such that 𝑇𝑛×𝑛 ≈ 𝑇𝑛×𝑛 = 𝑋𝑛×𝑐 · 𝑌𝑐×𝑛 . Then, 𝑇𝑘
can be approximated as

𝑇𝑘 ≈ 𝑇𝑘 = (𝑋𝑌)𝑘 = (𝑋𝑌) · (𝑋𝑌) · (𝑋𝑌) · · · (𝑋𝑌)︸ ︷︷ ︸
𝑘

= 𝑋 · (𝑌𝑋) · (𝑌𝑋) · · · (𝑌𝑋)︸ ︷︷ ︸
𝑘−1

·𝑌 = 𝑋 · 𝑍𝑘−1 · 𝑌, (12)

where 𝑍 = 𝑌 · 𝑋 is a small matrix of size 𝑐 × 𝑐 .
One may adopt different matrix decomposition algorithms listed in Table 3 to implement Equa-

tion 12. However, these matrix decomposition algorithms are either inefficient or only applicable

to specific types of matrices. Based on the observation that approximating matrix 𝑇 is inefficient,

we propose the 𝑇 2
-Approx algorithm that efficiently approximates matrix 𝑇 2

in the next section.

5.2 𝑇 2-Approx Algorithm
According to the matrix multiplication conversion (MMC) algorithm [21–23], it is efficient to

approximate the multiplication of two matrices by the multiplication of anther two matrices, i.e.,

𝐴 · 𝐵 ≈ 𝐶 · 𝐷 . It can be applied to any type of matrix and its time complexity is 𝑂 (𝑐) [23] where
𝑐 is the number of sampled columns and rows. Taking the advantage of the MMC algorithm, we

propose to approximate the multiplication of two 𝑇 by the multiplication of another two matrices,

i.e.,

𝑇 2

𝑛×𝑛 = 𝑇𝑛×𝑛 ·𝑇𝑛×𝑛 ≈ 𝑋𝑛×𝑐 · 𝑌𝑐×𝑛, (13)

where 𝑐 ≪ 𝑛. Then, we consider 𝑇𝑘
as the multiplication of several 𝑇 2

, and thus 𝑇𝑘
can be

approximated as

𝑇𝑘 = 𝑇 2 ·𝑇 2 ·𝑇 2 · · ·𝑇 2︸ ︷︷ ︸
𝑘/2

≈ (𝑋𝑌) · (𝑋𝑌) · (𝑋𝑌) · · · (𝑋𝑌)︸ ︷︷ ︸
𝑘/2

= 𝑋 · (𝑌𝑋) · (𝑌𝑋) · · · (𝑌𝑋)︸ ︷︷ ︸
𝑘/2−1

·𝑌 = 𝑋 · 𝑍𝑘/2−1 · 𝑌, (14)

where 𝑍𝑐×𝑐 = 𝑌𝑐×𝑛 · 𝑋𝑛×𝑐 . Therefore, we convert the computation of the 𝑘 th power of matrix 𝑇 to

the computation of the (𝑘/2 − 1)th power of a small matrix 𝑍 .

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:14 Siyue Wu et al.

We propose the𝑇 2
-Approx algorithm that uses the above idea to compute approximate PageRank

values. Below, we convert the original equation of the PageRank (Equation 2) based on 𝑇𝑘
into the

formula based on 𝑍𝑘/2−1
, which guarantees the correctness of the 𝑇 2

-Approx algorithm.

𝜋 = (1 − 𝛼) ·
(∞∑︁
𝑘=0

𝛼𝑘𝑇𝑘

)
· 𝜋0 ≈ (1 − 𝛼) ·

(∞∑︁
𝑘=0

𝛼𝑘 (𝑋 · 𝑌) 𝑘2
)
· 𝜋0

= (1 − 𝛼)𝜋0 + (1 − 𝛼)𝛼 ·
(∞∑︁
𝑘=1

(𝛼2) 𝑘−12 · 𝑋 · (𝑌 · 𝑋) 𝑘−12 · 𝑌
)
· 𝜋0

= (1 − 𝛼)𝜋0 +
𝛼

1 + 𝛼 · 𝑋 ·
(
(1 − 𝛼2) ·

∞∑︁
𝑘=1

(𝛼2) 𝑘−12 𝑍
𝑘−1
2

)
𝑌 · 𝜋0

= (1 − 𝛼)𝜋0 +
𝛼

1 + 𝛼 · 𝑋 ·
(
(1 − 𝛼 ′) ·

∞∑︁
𝑘 ′=0

(𝛼 ′)𝑘 ′𝑍𝑘 ′ · �̃�0

)
, (15)

where 𝛼 ′ = 𝛼2
, 𝑘 ′ = (𝑘 − 1)/2, and �̃�0 = 𝑌 · 𝜋0. The underlined part in the above equation can be

computed using the power iteration method (Equation 3).

Algorithm 5.1 shows the pseudo code of the 𝑇 2
-Approx algorithm. According to the given

sampling probability distribution F , matrix 𝑋 is constructed by 𝑐 sampled columns from 𝑇 and

matrix 𝑌 is constructed by taking the corresponding 𝑐 rows from 𝑇 (lines 1 and 2). Then, matrix 𝑍

is calculated as 𝑌 · 𝑋 (line 3). Next, the initial PageRank vector is set to

[
1

𝑛

]
𝑛
(line 4). According

to Equation 15, the initial PageRank vector is first multiplied by matrix 𝑌 (line 5). After that, the

power iteration method is conducted using matrix 𝑍 (lines 7–10). In the end, line 11 multiplies the

current PageRank vector by matrix 𝑋 and computes the approximate PageRank values according

to Equation 15.

Algorithm 5.1 𝑇 2
-Approx

Input: The transition matrix 𝑇 of graph 𝐺 containing 𝑛 vertices, the number of sampled columns

and rows 𝑐 , termination threshold 𝜏 , the damping factor 𝛼 , the sampling probability distribution

F .
Output: Approximate PageRank values �̃� of 𝐺 .

1: 𝑋 ← sampling 𝑐 columns from 𝑇 according to the probability distribution F ;
2: 𝑌 ← taking the corresponding 𝑐 rows from 𝑇 ;

3: 𝑍 ← 𝑌 · 𝑋 ;

4: 𝜋0 ←
[
1

𝑛

]
𝑛
;

5: �̃� (0) ← 𝑌 · 𝜋0;
6: 𝑘 ← 0;

7: repeat

8: 𝑘 ← 𝑘 + 1;
9: �̃� (𝑘) ← (1 − 𝛼2) · 𝑍 · �̃� (𝑘−1) + 𝛼2 [1

𝑐
]𝑐 ;

10: until ∥�̃� (𝑘) − �̃� (𝑘−1) ∥𝐹 < 𝜏

11: �̃� ← (1 − 𝛼) · 𝜋0 + 𝛼
1+𝛼 · 𝑋 · �̃�

(𝑘)
;

12: �̃� ← normalizing �̃� ;

13: return �̃� ;

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:15

0 0 0 0.33 0 0.33 0.33 0 0 0
0 0 0 0 0.25 0 0.25 0.25 0 0.25
0 0.50 0 0 0 0 0 0 0.50 0
0 0.25 0 0 0.25 0 0.25 0 0.25 0

0.25 0 0.25 0 0 0.25 0 0 0.25 0
0 0 0 0 1.00 0 0 0 0 0
0 0 0 0 0.25 0.25 0 0.25 0 0.25
0 0.20 0 0.20 0.20 0 0 0 0.20 0.20

0.20 0.20 0.20 0 0 0.20 0 0.20 0 0
0 0.50 0 0 0 0 0 0.50 0 0

Approximate PageRank vector
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

0.10 0.11 0.10 0.08 0.19 0.10 0.06 0.06 0.15 0.08
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0 0 0.33 0
0 0.25 0 0.25
0 0 0 0
0 0.25 0 0

0.25 0 0.25 0
0 1.00 0 0
0 0.25 0.25 0.25
0 0.20 0 0

0.20 0 0.20 0.20
0 0 0 0.50

(1)
= Y

= X

Z = YX

X
ℼ ℼ

Z

Z

Y

0 0.5 0 0 0 0 0 0 0.5 0
0.25 0 0.25 0 0 0.25 0 0 0.25 0

0 0 0 0 1 0 0 0 0 0
0 0.2 0 0.2 0.2 0 0 0 0.2 0.2

0.10 0.13 0.10 0.23
0.05 0.25 0.13 0.05
0.25 0 0.25 0
0.09 0.10 0.09 0.19

Fig. 4. 𝑇 2-Approx algorithm.

Example 2. Figure 4 illustrates the working process of algorithm 𝑇 2
-Approx. Given a graph𝐺 ,

matrix 𝑇 is shown in the figure. Suppose columns 3, 5, 6, and 8 in 𝑇 are sampled and matrix 𝑌 is

shown in the figure. Then, matrix 𝑋 is composed of the corresponding rows, i.e, rows 3, 5, 6, and 8

in 𝑇 . Next, matrix 𝑍 is calculated as 𝑌 · 𝑋 , as shown in the figure. After that, the initial PageRank

vector 𝜋0 is multiplied by matrix 𝑌 , resulting in vector �̃� . Vector �̃� is iteratively multiplied by matrix

𝑍 until the termination threshold is satisfied. In the end, vector �̃� is multiplied by matrix 𝑋 and

returned as the approximate PageRank vector.

Discussion. The 𝑇 2
-Approx algorithm uses modified MMC algorithm to approximate 𝑇 2

that has

the following differences, compared with the original MMC algorithm.

(i) The modified MMC algorithm is independent of the sampling probability distribution, while

traditional MMC uses the Euclidean-norm of column and row probability distribution (Equation 6)

(ii) For each sampled column and row, the traditionalMMC algorithm performs a scaling operation

that divides each element in the column and the row by

√︁
𝑐 · 𝑝𝑐

𝑖
, which aims to guarantee an unbiased

estimation of the matrix multiplication [21, 23]. The modified MMC algorithm does not perform

this scaling operation, due to the same reason mentioned in Section 4.2.

Lemma 4. The time complexity of the𝑇 2-Approx algorithm is𝑂 (𝑐2 ·𝑛 +𝑐2 · (log 𝑐 + log𝛼 𝜏)), where
𝑐 ≪ 𝑛.

Proof. The computation cost of the𝑇 2
-Approx algorithm is dominated by two phases. In the first

phase (lines 1–3), constructing matrices 𝑋 , 𝑌 , and 𝑍 takes 𝑂 (𝑐2 · 𝑛) time. In the second phase, the

algorithm iteratively computes the PageRank vector using matrix 𝑍 (lines 7–10). Since the number

𝑘 of iterations needed on matrix 𝑇𝑛×𝑛 is 𝑂 (log𝑛 + log𝛼 𝜏) [63], the number of iterations needed on

matrix 𝑍𝑐×𝑐 is𝑂 (log 𝑐 + log𝛼 𝜏). Given that the time complexity of the power iteration method on a

graph having𝑚 edges is𝑂 (𝑘 ·𝑚) [20], we derive that the second phase takes𝑂 (𝑐2 · (log 𝑐 + log𝛼 𝜏))
time, since the number of edges in the graph corresponding to matrix 𝑍 is bounded by 𝑐2. Overall,

the time complexity of 𝑇 2
-Approx is 𝑂 (𝑐2 · 𝑛 + 𝑐2 · (log 𝑐 + log𝛼 𝜏)), where 𝑐 ≪ 𝑛. □

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:16 Siyue Wu et al.

5.3 Error Bound
Since we use the modified MMC algorithm in the 𝑇 2

-Approx algorithm, the error bound of the

MMC algorithm can not be applied. We derive the error bound of the 𝑇 2
-Approx algorithm in

Lemma 5.

Lemma 5. According to algorithm 𝑇 2-Approx, we have

∥𝑇 2 − 𝑋 · 𝑌 ∥𝐹 ≤
√
𝑛 − 𝑐 ∥𝑇 ∥2𝐹 .

The proof is available in the supplementary material.

Discussion. We proceed to compare the error bound of the 𝑇 2
-Approx algorithm with that of

existing matrix approximation-based algorithms listed in Table 1. According to Lemma 2, ∥𝑇𝑘 −
(𝑋𝑌)𝑘/2∥𝐹 ≤ 𝑘/2

√
𝑛∥𝑇 2 − 𝑋𝑌 ∥𝐹 ≤ 𝑘/2

√︁
𝑛(𝑛 − 𝑐)∥𝑇 ∥2

𝐹
. Considering the error bounds of DSPI and

ASPI in Table 1, their bounds are based on ∥𝑇 ∥𝑘
𝐹
that is larger than our bound based on 𝑘 · ∥𝑇 ∥2

𝐹
.

Based on Lemma 2, the error bound of the SVD-based PageRank approximation algorithm in Table 1

can be represented as ∥𝑇 2 −𝑇 2∥ ≤ 2

√
𝑛

√︃
∥𝑇 −𝑇𝜌 ∥2𝐹 + 𝜀∥𝑇 ∥2𝐹 , which is close to our bound.

6 Empirical Study
6.1 Experimental Setup
Datasets. We conduct evaluations on three real large graph datasets, which are summarized in

Table 4. Friendster [57] and Orkut [58] are social networks from Friendster and Orkut websites,

respectively. UKDomain [9] is a hyperlink network in 2007 in the United Kingdom.

Table 4. Statistics of datasets.

Dataset # Vertices # Edges

Orkut 3,072,441 117,184,899

Friendster 65,608,366 1,806,067,135

UKDomain 105,153,952 3,301,876,564

Competitors. The proposed algorithms CUR-Trans and 𝑇 2
-Approx are compared with two repre-

sentative sampling-based algorithms: the local PageRank algorithm with pruning (LPRAP) [1] and

ApproxRank [76] and with one representative matrix approximation-based algorithm DSPI [51].

To further analyze the proposed transformation model, we include two variants of CUR-Trans

that replace the CUR-based low-rank approximation in Algorithm 4.1 with the Truncated SVD

algorithm [44] and the ConstantTime SVD algorithm [24], respectively.

The reasons for excluding other existing approximation PageRank algorithms are as follows.

The iteration method and the Monte Carlo method involve the entire graph or the whole transition

matrix in the iterative computation. The main memory consumption is very high and they are not

applicable to very large graphs. Algorithm ASPI [51] computes a low-rank approximate matrix in

each iteration that is time-consuming. The SVD-based PageRank approximation [7] involves the

entire transition matrix in the SVD decomposition. It causes memory leaks on dataset Orkut. We

have tested these algorithms on a small graph Gowalla [16] with 196,591 vertices. The iteration

method terminates due to the memory leaks. The Monte Carlo-based algorithms [55, 66] spend

more than 20 hours to perform just 6 iterations in distributed system and more than 2 hours on a

single machine.

Metrics.We compare the proposed algorithms and the competitors in terms of the computation

time and the error of the approximate results. Following the previous work [5, 36, 74], the ground

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:17

truth PageRank values are calculated by the power iteration algorithm for a given termination

threshold 𝜏 . We use the implementation in the Python Networkit package [2] and set 𝜏 = 1

100·𝑛
where 𝑛 is the number of vertices in the graph. The computation time of the ground truth PageRank

values on datasets Orkut, Friendster, and UKDomain are 11 seconds, 535 seconds, and 275 seconds,

respectively. We calculate the absolute error between the ground truth PageRank value and the

approximate PageRank value for each vertex, and then draw box plots.

Settings. Since the source code of the competitors are not available, we have implemented all

the competitors. Specifically, algorithms DSPI and LPRAP compute PageRank values based on

graph operations. They are implemented using Networkit (10.1) [2]. Algorithms ApproxRank,

SVD-Trans, CUR-Trans, and 𝑇 2
-Approx perform matrix iterations. They are implemented using

NumPy (1.20.1) [32] and SciPy (1.8.1) [71]. All the algorithms are running on a machine with 4 Intel

Xeon E7-4830 CPUs (56 cores, 2.0 GHz) and 2 TB main memory with Python (3.8.8).

Parameters. All the evaluated algorithms take the sampling ratio as a parameter. LPRAP and

ApproxRank sample vertices in the graph. DSPI samples elements in the transition matrix. SVD-

Trans, CUR-Trans, and𝑇 2
-Approx sample columns and rows in the transition matrix. To have a fair

comparison, we tune the sampling ratios of different algorithms to generate the same amount of

sampled edges. We report the performance of all the algorithms when the edge sampling ratio is

set to 0.1%, 0.3%, 0.5%, 0.7%, and 1%. We did not use sampling ratios higher than 1%, because on

very large graphs, 1% of the data is still a large graph. It is challenging for all the algorithms when

using low sampling ratios.

Algorithm LPRAP has a parameter that determines whether the neighbors of a sampled vertex

will be included in the next iteration. It has been tuned and set to 10
−8
, 10
−9
, and 10

−10
on datasets

Orkut, Friendster, and UKDomain, respectively. In algorithm DSPI, parameter 𝜃 is used to calculate

the sampling probability. We tune 𝜃 to get the best results of DSPI on the three datasets.

6.2 Experimental Results.
Main results. Figures 5a, 5c, and 5e compare the computation time of difference algorithms.

Figures 5b, 5d, and 5f present the box plot of the errors of the approximate PageRank values

returned by different algorithms. Figure 5g includes the amount of vertices with approximate

PageRank values provided by different algorithms. Our algorithms CUR-Trans and 𝑇 2
-Approx

report approximate PageRank values for all the vertices in the graph, while the two sampling-based

algorithms ApproxRank and LPRAP only estimate PageRank values for sampled vertices that is

a small portion of the graph. Algorithm DSPI approximates the transition matrix by conducting

element-wise sampling. It may generate isolated vertices, and thus the PageRank values of these

isolated vertices cannot be estimated. Since the competitor algorithms cannot estimate PageRank

values for all the vertices, we use 0 as the PageRank values of these vertices when computing the

errors.

Algorithms DSPI and LPRAP are significantly slower than the other algorithms. Because DSPI

conducts element-wise sampling in the transition matrix that is equivalent to traverse the entire

edge set in the graph. LPRAP needs to perform graph exploration to obtain the local graph structures

for sampled vertices, which is expensive. Algorithm ApproxRank is not slow, since it only computes

PageRank values for less than 10% of the vertices. Our algorithms CUR-Trans and 𝑇 2
-Approx are

fast on all the datasets when using different sampling ratios. 𝑇 2
-Approx is faster than CUR-Trans,

which proves that the time complexity of 𝑇 2
-Approx is lower.

The errors of DSPI and 𝑇 2
-Approx are comparable on datasets Orkut. The error of 𝑇 2

-Approx

is better than that of DSPI on dataset Friendster, but slightly worse than that of DSPI on dataset

UKDomain. ApproxRank and LPRAP provide good estimations on Orkut and UKDomain, but

perform bad on UKDomain. CUR-Trans is able to offer good estimations on all the datasets when

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:18 Siyue Wu et al.
ApproxRank LPRAP DSPI CUR-Trans T2-Approx

Categories

0

1

2

3

4

5

Va
lu

es

Bar Chart

ApproxRank LPRAP DSPI CUR-Trans T2-Approx

1.0 0.7 0.5 0.3 0.1

#sampled edges (%)

101

102

103

Ti
m

e
(s

ec
on

ds
)

(a) Efficiency (Orkut).

1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

0

1
2

3

4

5

6

7

8

Er
ro

r

×10 7

(b) Accuracy (Orkut).

1.0 0.7 0.5 0.3 0.1

#sampled edges (%)

103

104

105

Ti
m

e
(s

ec
on

ds
)

0.3 0.15 0.1 0.05 0.01

(c) Efficiency (Friendster).

1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

0

1

2

3

4

Er
ro

r

×10 8

0.3 0.15 0.1 0.05 0.01

(d) Accuracy (Friendster).

1.0 0.7 0.5 0.3 0.1

#sampled edges (%)

102

103

104

105

Ti
m

e
(s

ec
on

ds
)

(e) Efficiency (UKDomain).

1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Er
ro

r

×10 8

(f) Accuracy (UKDomain).

ApproxRank LPRAP DSPI CUR-Trans 𝑇 2
-Approx

Orkut 2.00%–9.00% 0.03% 8.90%–59.19% 100% 100%

Friendster 2.00%–9.00% 0.002% 12.68%–64.91% 100% 100%

UKDomain 2.00%–9.00% 0.001% 13.29%–55.32% 100% 100%

(g) The amount of returned vertices with PageRank values.

Fig. 5. Performance of different approximate PageRank algorithms.

using different sampling ratios. All the competitor algorithms only report the PageRank values of a

small amount of vertices, while our algorithms CUR-Trans and 𝑇 2
-Approx can provide estimated

results for all the vertices.

To sum up, our algorithms CUR-Trans and 𝑇 2
-Approx are able to provide good estimations

on the PageRank values of all the vertices when using small sampling ratios. They outperform

the competitors in terms of the computation time. The error of CUR-Trans is better than that of

𝑇 2
-Approx, while 𝑇 2

-Approx is more efficient than CUR-Trans.

Effect of the edge sampling ratio.We analyze the performance of all the algorithms when the

edge sampling ratio varies from 0.1% to 1%, shown in Figure 5. Different from the other algorithms,

the edge sampling ratio of CUR-Trans varies from 0.01% to 0.3% on dataset Friendster as shown

in Figures 5c and 5d. The reason is that when using the edge sampling ratio larger than 0.3%, the

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:19

main memory size is not large enough for decomposing the matrix constructed by the sampled

rows and columns on dataset Friendster.

The computation time of LPRAP increases as the edge sampling ratio increases, since more edges

are involved in the computation. However, the error of LPRAP does not change much with the edge

sampling ratio. It is because that LPRAP traverses the incident edges of the sampled vertices and

the error of LPRAP is affected by the number of traversed hops away from the sampled vertices.

When the edge sampling ratio varies from 0.1% to 1%, the number of traversed hops does not

increase much, so that the error of LPRAP is not improved. The errors of DSPI are improved as

the edge sampling ratio increases, which is expected. However, the computation time does not

change much. The reason is that DSPI generates samples by traversing all the elements in the

adjacency matrix, which dominates the computation cost. Thus, the edge sampling ratio does not

affect the computation time much. There is no obvious trend of high edge sampling ratio yielding

more computation time of ApproxRank. It is because that the computation time of ApproxRank is

determined by the size of the adjacency matrix of the sampled subgraph. Given an edge sampling

ratio, we may obtain less vertices when high-degree vertices are chosen and we may obtain more

vertices when low-degree vertices are chosen. Due to the randomness of the sampling process, the

computation time of ApproxRank is not correlated with the edge sampling ratio. Since ApproxRank

only estimates PageRank values for less than 10% of the vertices in the graph and the rest of the

vertices are assigned 0 values, the error does not change much with the edge sampling ratio. The

computation time of CUR-Trans increases as the edge sampling ratio increases, which is expected.

The error does not change much. It is because that in the CUR decomposition, when the numbers

of sampled columns and rows exceed a certain multiple of the rank of the matrix, the error becomes

stable. In most cases, the computation time of 𝑇 2
-Approx increases as the edge sampling ratio

increases, which is expected. It spends a little bit more time when the sampling ratio is 0.1% on

dataset Orkut. The reason is that the computation on a small graph may require more number of

iterations to converge. The error of 𝑇 2
-Approx is not sensitive to the edge sampling ratio.

CUR-Trans vs. SVD-Trans. We compare the performance of CUR-Trans with two SVD-based

variants, i.e., Truncated SVD-Trans and ConstantTime SVD-Trans, in Figure 6. It is observed that

the errors of algorithms CUR-Trans and Truncated SVD-Trans are comparable, because both CUR-

based low-rank approximation and Truncated SVD-based low-rank approximation can preserve

the information in the transition matrix. The error of ConstantTime SVD-Trans is worse than

the other two algorithms, since ConstantTime SVD gains efficiency by sacrificing the accuracy of

the matrix approximation. CUR-Trans is significantly faster than both Truncated SVD-Trans and

ConstantTime SVD-Trans, since the modified CUR decomposition in the CUR-Trans algorithm is

efficient. Later, if better low-rank approximation algorithms are developed, it is easy to incorporate

them into our transformation model for PageRank approximation.

Effect of scaling operation. Sections 4.2 and 5.2 explain the reasons why the proposed algorithms

CUR-Trans and 𝑇 2
-Approx do not use the scaling operation. This experiment studies how the

scaling operation affects the performance. Figure 7 compares the computation time and the average

errors of the proposed algorithms CUR-Trans and 𝑇 2
-Approx (without scaling operations) and

the variants of CUR-Trans and 𝑇 2
-Approx with scaling operations. Figure 7a shows that both

CUR-Trans and𝑇 2
-Approx without scaling operations are significant faster than the corresponding

versions with scaling operations. Figure 7b shows that the average error of CUR-Trans with scaling

operation is not better than the proposed CUR-Trans and the average error of 𝑇 2
-Approx with

scaling operation is worse than the proposed 𝑇 2
-Approx.

Effect of the rank-𝑥 approximation in the CUR-Trans algorithm. In the CUR-Trans algorithm,

the modified CUR decomposition constructs a rank-𝑥 approximation of 𝑈 . Figure 8 shows the

computation time and the error of the CUR-Trans algorithm when varying 𝑥 on dataset Orkut. We

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:20 Siyue Wu et al.
CUR-Trans Truncated SVD-TransConstantTime SVD-Trans

Categories

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

es

Bar Chart

CUR-Trans Truncated SVD-Trans ConstantTime SVD-Trans

1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

101

102

103

Ti
m

e
(s

ec
on

ds
)

(a) Efficiency.

1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

0

1

2

3

4

5

6

7

8

Er
ro

r

×10 7

(b) Accuracy.

Fig. 6. CUR-Trans vs. SVD-Trans (Orkut). 0.2 0.4 0.6 0.8 1.0
#sampled edges (%)

0

100

200

300

400

Ti
m

e
(s

ec
on

ds
)

CUR-Trans with scaling
CUR-Trans without Scaling

T2-Approx with Scaling
T2-Approx without Scaling

0.2 0.4 0.6 0.8 1.0
#sampled edges (%)

0

100

200

300

400

Ti
m

e
(s

ec
on

ds
)

(a) Efficiency.

0.2 0.4 0.6 0.8 1.0
#sampled edges(%)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Av
er

ag
e

er
ro

r

×10-7

(b) Accuracy.

Fig. 7. Effect of scaling operation (Orkut).

observe that the error increases slightly as 𝑥 decreases, meaning that given different values of 𝑥 ,

the generated low-rank approximation matrices 𝐶 · �̃�𝑥 · 𝑅 are similar. The computation time of the

CUR-Trans algorithm decreases as 𝑥 decreases, meaning that choosing a lower-rank approximation

saves the computation cost. According to the CUR-Trans algorithm, on dataset Orkut, setting

𝑥 =
√
𝑐 = 38 can gain large efficiency improvement while keeping the error low.

Comparison with open source systems.We compare the performance of our algorithms with

open source systems: Networkit [67], GraphX [79], and Giraph [37] in Table 5. GraphX and Giraph

are distributed systems. Networkit is a single-machine system. The edge sampling ratio of our

algorithms CUR-Trans and𝑇 2
-Approx is set to 0.1%. Our algorithms are faster than the open source

systems. GraphX and Giraph are slow due to the high communication cost. Networkit is faster than

GraphX and Giraph, but requires large-size main memory on a single machine. Our algorithms

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:21

(a) Efficiency. (b) Accuracy.

Fig. 8. Performance of CUR-Trans when varying 𝑥 (Orkut).

Table 5. Our algorithms vs. open source systems.

Orkut Friendster UK2007

Networkit 11 seconds 535 seconds 275 seconds

GraphX 46 minutes 3+ hours 3+ hours

Giraph 11 minutes 3+ hours 3+ hours

CUR-Trans (0.1%) 4 seconds 198 seconds 129 seconds

𝑇 2
-Approx (0.1%) 5 seconds 215 seconds 93 seconds

convert the PageRank computation on a large graph to a small graph, which require less main

memory and have low computation cost.

Effect of the sampling probability distribution in the 𝑇 2
-Approx algorithm. According to

Lemma 5, the error bound of the 𝑇 2
-Approx algorithm is independent of the sampling probability

distribution. To justify this result, Figure 9 compares the computation time and the errors of

the 𝑇 2
-Approx algorithm using four different sampling probability distributions, i.e., the uniform

distribution and the three Euclidean norm based sampling probability distributions (Equations 4,

5, and 6) described in Section 3. The experiment results show that the computation time of the

four sampling probability distributions are comparable. The error of the Euclidean norm of column

probability distribution (Equation 4) is slightly worse than that of the other distributions on datasets

Orkut and UKDomain. The error of the Euclidean norm of row probability distribution (Equation 5)

is slightly worse than that of the other distributions on dataset Friendster. Hence, it is free to use

different sampling probability distributions in the 𝑇 2
-Approx algorithm.

Comparison of the vertex ranking.We rank the vertices in the descending order of their ground

truth PageRank values and take this ranking as the ideal ranking. Next, for each algorithm, we

obtain its vertex ranking in the descending order of their estimated PageRank values. Then, we

compute the Normalized Discounted Cumulative Gain (NDCG) [38] of the vertex ranking produced

by each algorithm. A high NDCG value indicates that the vertex ranking of an algorithm is close to

the ideal ranking. Figure 10 shows the NDCG values of all the algorithms on dataset Orkut. DSPI

performs the best. CUR-Trans is slightly worse than DSPI, but it is significantly faster than DSPI

as shown in Figure 5. CUR-Trans achieves higher NDCG values compared with ApproxRank and

LPRAP. Although 𝑇 2
-Approx is a little bit worse than the other algorithms, it is significantly faster

than the competitor algorithms as shown in Figure 5.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:22 Siyue Wu et al.(pcr) Uniform (pc) (pr)
Categories

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Va
lu

es

Bar Chart

(pcr) Uniform (pc) (pr)

1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

0

1

2

3

4

5

Ti
m

e
(s

ec
on

ds
)

(a) Efficiency (Orkut).

1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

0

2

4

6

8

Er
ro

r

×10 7

(b) Accuracy (Orkut).

1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

0

50

100

150

200

250

300

Ti
m

e
(s

ec
on

ds
)

(c) Efficiency (Friendster).

1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

0

1

2

3

4

Er
ro

r

×10 8

(d) Accuracy (Friendster).

1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

0

25

50

75

100

125

150

175

Ti
m

e
(s

ec
on

ds
)

(e) Efficiency (UKDomain).

1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1
#sampled edges (%)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Er
ro

r

×10 8

(f) Accuracy (UKDomain).

Fig. 9. Performance of the 𝑇 2-Approx algorithm using different sampling probability distributions.
ApproxRank LPRAP DSPI CUR-Trans T2-Approx

Categories

0

1

2

3

4

5

Va
lu

es

Bar Chart

ApproxRank LPRAP DSPI CUR-Trans T2-Approx

1.0 0.7 0.5 0.3 0.1

#sampled edges (%)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
D

C
G

Fig. 10. NDCG results of different algorithms (Orkut).

7 conclusion
PageRank is an important measurement, which has been widely used in various applications

(e.g., search engines, recommendation systems, and social networks). Despite extensive efforts

to develop efficient and accurate algorithms for computing PageRank values, existing methods

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:23

cannot efficiently provide accurate estimations for this measurement. To tackle this issue, we

first propose the CUR-Trans algorithm, which can reduce the time complexity for approximately

computing PageRank values with lower error bounds. Then, we propose the 𝑇 2
-Approx algorithm

to further reduce the time complexity for handling this operation. Experiment results show that

both CUR-Trans and 𝑇 2
-Approx algorithms can achieve the lowest response time for computing

PageRank on large graphs with the best accuracy (for the CUR-Trans algorithm) or competitive

accuracy (for the 𝑇 2
-Approx algorithm).

Acknowledgments
This work is supported in part by the National Natural Science Foundation of China under Grants

62372308 and 62202401 and the GuangDong Basic and Applied Basic Research Foundation under

Grant 2023A1515011619.

References
[1] Ziv Bar-Yossef andLi-Tal Mashiach. 2008. Local approximation of pagerank and reverse pagerank. In CIKM. 279–288.

[2] Eugenio Angriman, Alexander van der Grinten, Michael Hamann, Henning Meyerhenke, and Manuel Penschuck. 2022.

Algorithms for Large-Scale Network Analysis and the NetworKit Toolkit. In Algorithms for Big Data - DFG Priority
Program 1736. Vol. 13201. 3–20.

[3] Anton Anikin, Alexander Gasnikov, Alexander Gornov, Dmitry Kamzolov, Yury Maximov, and Yurii Nesterov. 2022.

Efficient numerical methods to solve sparse linear equations with application to pagerank. Optimization Methods and
Software 37 (2022), 907–935.

[4] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, and Natalia Osipova. 2007. Monte Carlo Methods in

PageRank Computation: When One Iteration is Sufficient. SIAM J. Numer. Anal. 45 (2007), 890–904.
[5] Bahman Bahmani, Kaushik Chakrabarti, and Dong Xin. 2011. Fast personalized PageRank on MapReduce. In SIGMOD.

973–984.

[6] Sudipto Banerjee and Anindya Roy. 2014. Linear algebra and matrix analysis for statistics. Crc Press.
[7] András A. Benczúr, Károly Csalogány, and Tamás Sarlós. 2005. On the feasibility of low-rank approximation for

personalized PageRank. In WWW. 972–973.

[8] Monica Bianchini, Marco Gori, and Franco Scarselli. 2005. Inside PageRank. ACM Trans. Internet Techn. 5 (2005),

92–128.

[9] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004. UbiCrawler: a scalable fully distributed

Web crawler. Softw. Pract. Exp. 34 (2004), 711–726.
[10] Arsineh Boodaghian Asl, Jayanth Raghothama, Adam Darwich, and Sebastiaan Meijer. 2021. using PageRank and

social network analysis to sprcify mental health factors. Proceedings of the Design Society 1 (2021), 3379–3388.

[11] L. A. Breyer. 2002. Markovian page ranking distributions: some theory and simulations. Technical Report.
[12] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Comput.

Networks 30, 1-7 (1998), 107–117.
[13] Jie Chen and Yousef Saad. 2009. On the tensor SVD and the optimal low rank orthogonal approximation of tensors.

SIAM journal on Matrix Analysis and Applications 30 (2009), 1709–1734.
[14] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. 2004. Local methods for estimating pagerank values. In CIKM. 381–389.

[15] Zhen Chen, Xingzhi Guo, Baojian Zhou, Deqing Yang, and Steven Skiena. 2023. Accelerating Personalized PageRank

Vector Computation. In KDD. 262–273.
[16] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility: user movement in location-based social

networks. In SIGKDD. 1082–1090.
[17] Fan Chung. 2014. A Brief Survey of PageRank Algorithms. IEEE Trans. Netw. Sci. Eng. 1 (2014), 38–42.
[18] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022. Introduction to algorithms. MIT

press.

[19] Gianna M. Del Corso, Antonio Gulli, and Francesco Romani. 2005. Fast PageRank Computation via a Sparse Linear

System. Internet Math. 2 (2005), 251–273.
[20] Jason V. Davis and Inderjit S. Dhillon. 2006. Estimating the global pagerank of web communities. In SIGKDD. 116–125.
[21] Petros Drineas and Ravi Kannan. 2001. Fast Monte-Carlo Algorithms for Approximate Matrix Multiplication. In FOCS.

452–459.

[22] Petros Drineas and Ravi Kannan. 2003. Pass efficient algorithms for approximating large matrices. In ACM-SIAM.

223–232.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:24 Siyue Wu et al.

[23] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. 2006. Fast Monte Carlo Algorithms for Matrices I: Approxi-

mating Matrix Multiplication. SIAM J. Comput. 36 (2006), 132–157.
[24] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. 2006. Fast Monte Carlo Algorithms for Matrices II: Computing

a Low-Rank Approximation to a Matrix. SIAM J. Comput. 36 (2006), 158–183.
[25] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. 2006. Fast Monte Carlo Algorithms for Matrices III: Computing

a Compressed Approximate Matrix Decomposition. SIAM J. Comput. 36 (2006), 184–206.
[26] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. 2008. Relative-Error CUR Matrix Decompositions. SIAM

J. Matrix Anal. Appl. 30 (2008), 844–881.
[27] Carl Eckart and Gale Young. 1936. The approximation of one matrix by another of lower rank. Psychometrika 1 (1936),

211–218.

[28] David F Gleich, Andrew P Gray, Chen Greif, and Tracy Lau. 2010. An inner-outer iteration for computing PageRank.

SIAM Journal on Scientific Computing 32 (2010), 349–371.

[29] Gene H Golub, Alan Hoffman, and Gilbert W Stewart. 1987. A generalization of the Eckart-Young-Mirsky matrix

approximation theorem. Linear Algebra and its applications 88 (1987), 317–327.
[30] Gene H Golub and Christian Reinsch. 1971. Singular value decomposition and least squares solutions. In Handbook for

Automatic Computation: Volume II: Linear Algebra. Springer, 134–151.
[31] Chuanqing Gu, Fei Xie, and Ke Zhang. 2015. A two-step matrix splitting iteration for computing PageRank. J. Comput.

Appl. Math. 278 (2015), 19–28.
[32] Charles R. Harris, K. JarrodMillman, Stéfan van derWalt, Ralf Gommers, Pauli Virtanen, David Cournapeau, EricWieser,

Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk,

Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin

Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array

programming with NumPy. Nat. 585 (2020), 357–362.
[33] Somaia AwadHassan, A. M. Hemeida, andMountasser M.M.Mahmoud. 2016. Performance Evaluation of Matrix-Matrix

Multiplications Using Intel’s Advanced Vector Extensions (AVX). Microprocess. Microsystems 47 (2016), 369–374.
[34] Taher Haveliwala et al. 1999. Efficient computation of PageRank. Technical Report. Citeseer.
[35] Fumio Hiai and Dénes Petz. 2014. Introduction to matrix analysis and applications. Springer Science & Business Media.

[36] Guanhao Hou, Xingguang Chen, Sibo Wang, and Zhewei Wei. 2021. Massively Parallel Algorithms for Personalized

PageRank. Proc. VLDB Endow. 14 (2021), 1668–1680.
[37] J Jackson. 2013. Facebook’s graph search puts Apache Giraph on the map. Retrieved July 25 (2013), 2015.

[38] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Transactions on
Information Systems (TOIS) 20, 4 (2002), 422–446.

[39] Sepandar Kamvar, Taher Haveliwala, and Gene Golub. 2004. Adaptive methods for the computation of PageRank.

Linear Algebra Appl. 386 (2004), 51–65.
[40] Sepandar D Kamvar, Taher H Haveliwala, Christopher Manning, and Gene H Golub. 2003. Exploiting the block structure

of the web for computing pagerank. Technical Report.
[41] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H. Golub. 2003. Extrapolation methods

for accelerating PageRank computations. In WWW. 261–270.

[42] Seunghwa Kang, Joseph Nke, and Brad Rees. 2022. Analyzing Multi-trillion Edge Graphs on Large GPU Clusters: A

Case Study with PageRank. In HPEC. 1–7.
[43] George Karypis and Vipin Kumar. 1999. Parallel Multilevel series k-Way Partitioning Scheme for Irregular Graphs.

SIAM Rev. 41 (1999), 278–300.
[44] N Kishore Kumar and Jan Schneider. 2017. Literature survey on low rank approximation of matrices. Linear and

Multilinear Algebra 65, 11 (2017), 2212–2244.
[45] Miloš Kotlar, Marija Punt, and Veljko Milutinović. 2022. Energy efficient implementation of tensor operations using

dataflow paradigm for machine learning. In Advances in Computers. Vol. 126. 151–199.
[46] Liang Lan, Kai Zhang, Hancheng Ge, Wei Cheng, Jun Liu, Andreas Rauber, Xiao-Li Li, Jun Wang, and Hongyuan Zha.

2017. Low-rank decomposition meets kernel learning: A generalized Nyström method. Artificial Intelligence 250 (2017),
1–15.

[47] Amy Nicole Langville and Carl Dean Meyer. 2003. Survey: Deeper Inside PageRank. Internet Math. 1 (2003), 335–380.
[48] Mu Li, James Tin-Yau Kwok, and Baoliang Lü. 2010. Making large-scale Nyström approximation possible. In ICML.

631.

[49] Xiaocan Li, Shuo Wang, and Yinghao Cai. 2019. Tutorial: Complexity analysis of singular value decomposition and its

variants. arXiv (2019).

[50] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, and Guoren Wang. 2022. Efficient Personalized PageRank Computation: A

Spanning Forests Sampling Based Approach. In SIGMOD. 2048–2061.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

Efficient and Accurate PageRank Approximation on Large Graphs 196:25

[51] Wenting Liu, Guangxia Li, and James Cheng. 2015. Fast PageRank approximation by adaptive sampling. Knowl. Inf.
Syst. 42 (2015), 127–146.

[52] Jun Lu. 2021. A rigorous introduction to linear models. arXiv (2021).

[53] Jun Lu. 2022. Matrix decomposition and applications. arXiv (2022).

[54] Siqiang Luo. 2019. Distributed PageRank Computation: An Improved Theoretical Study. In AAAI. 4496–4503.
[55] Siqiang Luo, Xiaowei Wu, and Ben Kao. 2022. Distributed PageRank computation with improved round complexities.

Inf. Sci. 607 (2022), 109–125.
[56] Michael W. Mahoney and Petros Drineas. 2009. CUR matrix decompositions for improved data analysis. Proc. Natl.

Acad. Sci. USA 106, 3 (2009), 697–702.

[57] Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles in Ego Networks. In NIPS. 548–556.
[58] AlanMislove,MassimilianoMarcon, P. Krishna Gummadi, Peter Druschel, and Bobby Bhattacharjee. 2007. Measurement

and analysis of online social networks. In SIGCOMM. 29–42.

[59] Dingheng Mo and Siqiang Luo. 2023. Single-Source Personalized PageRanks With Workload Robustness. IEEE Trans.
Knowl. Data Eng. 35 (2023), 6320–6334.

[60] Yuji Nakatsukasa. 2020. Fast and stable randomized low-rank matrix approximation. arXiv:2009.11392 (2020).
[61] José Ignacio Orlicki, Pablo Ignacio Fierens, and J. Ignacio Alvarez-Hamelin. 2008. Faceted Ranking of Egos in

Collaborative Tagging Systems. CoRR abs/0809.4668 (2008).

[62] José Ignacio Orlicki, Pablo Ignacio Fierens, and J. Ignacio Alvarez-Hamelin. 2009. Faceted Ranking in Collaborative

Tagging Systems - Efficient Algorithms for Ranking Users based on a Set of Tags. InWEBIST. 626–633.
[63] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The pagerank citation ranking: Bring order to

the web. Technical Report. Technical report, stanford University.

[64] C-T Pan. 2000. On the existence and computation of rank-revealing LU factorizations. Linear Algebra Appl. 316 (2000),
199–222.

[65] R Piziak and PL Odell. 1999. Full rank factorization of matrices. Mathematics magazine 72 (1999), 193–201.
[66] Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and Eli Upfal. 2015. Fast distributed PageRank

computation. Theor. Comput. Sci. 561 (2015), 113–121.
[67] Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. 2016. NetworKit: A tool suite for large-scale complex

network analysis. Network Science 4, 4 (2016), 508–530.
[68] Min Tao, Xinmin Yang, Gao Gu, and Bohan Li. 2020. Paper recommend based on LDA and PageRank. In ICAIS. 571–584.
[69] Zhaolu Tian, Yong Liu, Yan Zhang, Zhongyun Liu, and Maoyi Tian. 2019. The general inner-outer iteration method

based on regular splittings for the PageRank problem. Appl. Math. Comput. 356 (2019), 479–501.
[70] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast Random Walk with Restart and Its Applications. In

ICDM. 613–622.

[71] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,

Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod

Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu

Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0

Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020),
261–272.

[72] Hanzhi Wang, Zhewei Wei, Junhao Gan, Ye Yuan, Xiaoyong Du, and Ji-Rong Wen. 2022. Edge-based Local Push for

Personalized PageRank. Proc. VLDB Endow. 15 (2022), 1376–1389.
[73] SiboWang and Yufei Tao. 2018. Efficient Algorithms for Finding Approximate Heavy Hitters in Personalized PageRanks.

In SIGMOD. 1113–1127.
[74] Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei, Wenqing Lin, Yin Yang, and Nan Tang. 2019.

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries. ACM Trans. Database Syst. 44
(2019), 18:1–18:37.

[75] Yizhuo Wang, Weixing Ji, Xu Chen, and Sensen Hu. 2015. Task Parallel Implementation of Matrix Multiplication on

Multi-socket Multi-core Architectures. In ICA3PP, Vol. 9530. 93–104.
[76] Yao Wu and Louiqa Raschid. 2009. ApproxRank: Estimating Rank for a Subgraph. In ICDE. 54–65.
[77] Yajun Xie, Lihua Hu, and Changfeng Ma. 2023. A Parameterized Multi-Splitting Iterative Method for Solving the

PageRank Problem. Mathematics 11, 15 (2023), 3320.
[78] Ya-Jun Xie and Chang-Feng Ma. 2018. A relaxed two-step splitting iteration method for computing PageRank.

Computational and Applied Mathematics 37 (2018), 221–233.
[79] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013. Graphx: A resilient distributed graph

system on spark. In First international workshop on graph data management experiences and systems. 1–6.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

196:26 Siyue Wu et al.

[80] Jieping Ye and Qi Li. 2005. A two-stage linear discriminant analysis via QR-decomposition. IEEE Transactions on
Pattern Analysis and Machine Intelligence 27 (2005), 929–941.

[81] Fuzhen Zhang. 2015. A matrix decomposition and its applications. Linear and Multilinear Algebra 63 (2015), 2033–2042.
[82] Shijie Zhou, Kartik Lakhotia, Shreyas G. Singapura, Hanqing Zeng, Rajgopal Kannan, Viktor K. Prasanna, James Fox,

Euna Kim, Oded Green, and David A. Bader. 2017. Design and implementation of parallel PageRank on multicore

platforms. In HPEC. 1–6.

Received January 2024; revised April 2024; accepted May 2024

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 196. Publication date: September 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Transformation-based Method
	4.1 Transformation Model
	4.2 CUR-based Transformation
	4.3 Error Bound

	5 T2-Approximation Method
	5.1 Motivation
	5.2 T2-Approx Algorithm
	5.3 Error Bound

	6 Empirical Study
	6.1 Experimental Setup
	6.2 Experimental Results.

	7 conclusion
	Acknowledgments
	References

