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Abstract—Additive Kernel SVM has been extensively used
in many applications, including human activity detection and
pedestrian detection. Since training an additive kernel SVM
model is very time-consuming, which is not scalable to large-
scale datasets, many efficient solutions have been developed in the
past few years. However, most of the existing methods normally
fail to achieve one of these three important conditions which
are (1) low classification error, (2) low memory space, and (3)
low training time. In order to simultaneously fulfill these three
conditions, we develop the new piecewise-linear approximate
measure (PLAME) for training additive kernel SVM models.
Experimental results verify that this approach can achieve the
best trade-off between accuracy, memory space, and training
time compared with different types of state-of-the-art methods.

I. INTRODUCTION

Kernel functions have been extensively used in different
communities, including database [3], [6], [7], data mining [5],
machine learning [15], and computer vision [9], [11], [13],
[14], for supporting various fundamental tasks (e.g., clas-
sification, clustering, and visualization). Recently, additive
kernels [5], [11], [14] have received significant attention due to
a wide range of applications. Human activity detection systems
[12] utilize SVM models with additive kernels to predict
human activities, e.g., walk and sit down, from sensor data.
Pedestrian detection systems [13] utilize SVM models with
additive kernels to detect pedestrians in an image. In above
studies, the scholars believe that using SVM models with
additive kernels can generally provide superior performance
in their applications.

However, training SVM models with additive kernels is
computationally expensive, which cannot be scalable to sup-
port large-scale datasets. Although various types of (exact and
approximate) methods have been developed for tackling this
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issue, all of them cannot simultaneously fulfill these three
conditions, which are (1) low classification error (i.e., high
accuracy), (2) low memory consumption, and (3) low training
time (cf. Table I).
TABLE I: Different methods for training SVM with additive
kernels.

Method Classification Memory Training
error space time

Kernel SVM solver [8] low low high
Linear SVM solver [10] high low low
Feature approximation high high low[2], [9], [11], [14]

Function approximation [15] high low low
PLAME (ours) [4] low low low

Therefore, we develop the new similarity measure, called
Piecewise-Linear Approximate MEasure (PLAME), which di-
rectly utilizes the piecewise-linear function to approximate
additive kernels. By incorporating PLAME into the linear
SVM solver (with slight modification), we show that this
approach can fulfill all conditions in Table I for training SVM
models with additive kernels.

The rest of the paper is organized as follows. We first
provide an overview of additive kernels in Section II. Then, we
illustrate the main concept of PLAME in Section III. Lastly,
we show some experimental results in Section IV.

II. OVERVIEW OF ADDITIVE KERNELS

Additive kernels have been successfully used in both com-
puter vision [13], [14] and machine learning [15] communities.
Given xi and x as two d-dimensional vectors, where x

(ℓ)
i

and x(ℓ) denote the ℓth dimensional values of these two
vectors, respectively, Table II summarizes four famous additive
kernel functions, which are χ2, JS, intersection, and Hellinger
kernels.

Observe that these kernel functions exhibit the following
additive property [5], [13] (cf. Definition 1).

Definition 1. If the kernel function K(xi,x) is the sum of
d one-dimensional kernel functions (denoted as k(x

(ℓ)
i , x(ℓ))),

K(xi,x) is the additive kernel function.



TABLE II: Four representative additive kernel functions.
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As an example, k(x
(ℓ)
i , x(ℓ)) =

2x
(ℓ)
i x(ℓ)

x
(ℓ)
i +x(ℓ)

for χ2 kernel
function.

III. PLAME: PIECEWISE-LINEAR APPROXIMATE
MEASURE

In our work [4], we propose a novel approximate measure,
which is kPL(x

(ℓ)
i , x(ℓ)), to replace k(x

(ℓ)
i , x(ℓ)). As a remark,

we denote x
(ℓ)
i as the ℓth dimensional value of the ith training

data. First, after we know the region, e.g., [L(ℓ), U(ℓ)]1, of
x
(ℓ)
i for each dimension, we can partition this region into P

intervals {I1, I2, ..., IP }, where Ip = [lp, up] (1 ≤ p ≤ P ).
Then, we can define this piecewise-linear approximate mea-
sure (PLAME) based on these intervals (cf. Equation 2).

kPL(x
(ℓ)
i , x(ℓ)) =


mx(ℓ)(I1)x

(ℓ)
i + cx(ℓ)(I1) if x(ℓ)

i ∈ I1

mx(ℓ)(I2)x
(ℓ)
i + cx(ℓ)(I2) if x(ℓ)

i ∈ I2
...

...
mx(ℓ)(IP )x

(ℓ)
i + cx(ℓ)(IP ) if x(ℓ)

i ∈ IP
(2)

where the slope mx(ℓ)(Ip) and the intercept cx(ℓ)(Ip) (for χ2

kernel) are denoted as:

mx(ℓ)(Ip) =
2x(ℓ)2

(x(ℓ) + up)(x(ℓ) + lp)
(3)

cx(ℓ)(Ip) =
2x(ℓ)lpup

(x(ℓ) + up)(x(ℓ) + lp)
(4)

IV. EXPERIMENTAL RESULTS

In our experiments, we adopt one small-scale dataset,
skin [8], and one large-scale dataset, casas [1], for testing
the accuracy and efficiency of different methods (cf. Table I).
Observe that our method, PLAME, can achieve low memory
space consumption (cf. Figure 1), low classification error (cf.
Table III), and low training time (cf. Figure 2) compared with
other state-of-the-art methods.
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Fig. 1: Trade-off between the memory space (i.e., dimen-
sionality of the feature vectors) and the accuracy of feature
approximation methods.

TABLE III: Accuracy of all methods (t.e.: the running time of
this method takes more than three days and m.e.: the memory
consumption of this method is more than 16GB.), where the
top-2 accuracy values are in bold type for each dataset and
the dimensionality of feature approximation methods is fixed
as ×7 of the original dimensionality.
MethodLIBSVMLIBLINEARVLFeatChebyshev LD PmSVMPLAME

skin 0.992 0.895 0.927 0.942 0.949 0.919 0.988
casas t.e. 0.71 m.e. m.e. m.e. 0.728 0.78
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Fig. 2: Response time (sec) for all methods in the training
phase, fixing the dimensionality of feature approximation
methods as ×7 of the original dimensionality.
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