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F(x) = Y™, a;y; K(x,X;) is the kernel SVM Additive kernels are demonstrated to be useful in many
classifier, where: application domains, including human activity detection
+ (x;,y;) denotes the it training data point and pedestrian detection.
(y; can be +1 or -1). Guo et al. [a] “... we train a SVM classifier with chi-

* n denotes the number of training data points.  square kernel for multi-class recognition task, which is
* d denotes the dimensionality of training data  beneficial for classifying the histogram features.”

pOintS- [a] Y. Guo, Y. LI, and Z. Shao. DSRF: A flexible trajectory descriptor for
Goal: Obtaln a; and b. articulated human action recognition. Pattern Recognition, 76: 137-148, 2018.
Existing Methods of Additive Kernel SVM and PLAME
Method Classification Memory [Training Our observation: Every additive kernel can be represented
__ crror | space | Hme by d one-dimensional additive kernel functions.
Kernel SVM solver [13] low low high d
Linear SVM 501ve'r [23], [28] high low low K(X, Xi) — 2 k(x .({) )’ x(f ))
Feature approximation =1 l
[35], [47], [59], [60] high high | low _ _ o _
[71, [17], [33], [64] Core i1dea of PLAME: Use a piecewise-linear function to
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el . 7s] ® M B approximate k(x'*, x®) and modify the linear SVM solver.
PLAME (ours) low low low function value
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cannot simultaneously fulfill these three conditions. Mo ()5 +eqo(l)
 Low classification error 0.2 A0 )3+ o (1)
 Low memory space
* Low training time 0.1
PLAME is the first approach that can achieve these P ) |
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Experimental Evaluation

Accuracy of all methods Training time of all methods
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