PLAME: Piecewise-Linear Approximate Measure for Additive Kernel SVM

Tsz Nam ChanZhe LiLeong Hou UShenzhen UniversityAlibaba CloudUniversity of Macauedisonchan@szu.edu.cnhuoju.lz@alibaba-inc.comryanlhu@um.edu.mo

Reynold Cheng The University of Hong Kong ckcheng@cs.hku.hk

Overview of Kernel SVM

Overview of Additive Kernels

 $F(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$ is the kernel SVM classifier, where:

Additive kernels are demonstrated to be useful in many application domains, including human activity detection and pedestrian detection.

- (\mathbf{x}_i, y_i) denotes the i^{th} training data point $(y_i \text{ can be } +1 \text{ or } -1).$
- *n* denotes the number of training data points.
- *d* denotes the dimensionality of training data points.

Goal: Obtain α_i and b.

Guo et al. [a] "... we train a SVM classifier with chisquare kernel for multi-class recognition task, which is beneficial for classifying the histogram features."

[a] Y. Guo, Y. Li, and Z. Shao. DSRF: A flexible trajectory descriptor for articulated human action recognition. Pattern Recognition, 76: 137-148, 2018.

Existing Methods of Additive Kernel SVM and PLAME

Mathad	Classification	Memory	Training
wiethou	error	space	time
Kernel SVM solver [13]	low	low	high
Linear SVM solver [23], [28]	high	low	low
Feature approximation [35], [47], [59], [60] [7], [17], [33], [64]	high	high	low
Function approximation [69], [71], [75]	high	low	low
PLAME (ours)	low	low	low

Existing SVM training methods (those references in the above table can be found in our TKDE paper.) cannot simultaneously fulfill these three conditions.

- Low classification error
- Low memory space

Our observation: Every additive kernel can be represented by d one-dimensional additive kernel functions.

$$K(\mathbf{x}, \mathbf{x}_i) = \sum_{\ell=1}^d k(x_i^{(\ell)}, x^{(\ell)})$$

Core idea of PLAME: Use a **piecewise-linear function** to approximate $k(x_i^{(\ell)}, x^{(\ell)})$ and modify the linear SVM solver.

- Low training time
- PLAME is the **first approach** that can achieve these three conditions.

Experimental Evaluation

Accuracy of all methods

Method	LIBSVM	LIBLINEAR	VLFeat	Chebyshev	LD	PmSVM	PLAME
skin	0.992	0.895	0.927	0.942	0.949	0.919	0.988
casas	t.e.	0.71	m.e.	m.e.	m.e.	0.728	0.78

Remark: t.e.: more than three days for training m.e.: more than 16 GB for training

Training time of all methods

