
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 1

PLAME: Piecewise-Linear Approximate
Measure for Additive Kernel SVM

Tsz Nam Chan, Member, IEEE, Zhe Li, Leong Hou U, Member, IEEE, Reynold Cheng, Member, IEEE

Abstract—Additive Kernel SVM has been extensively used in many applications, including human activity detection and pedestrian
detection. Since training an additive kernel SVM model is very time-consuming, which is not scalable to large-scale datasets, many
efficient solutions have been developed in the past few years. However, most of the existing methods normally fail to achieve one of
these three important conditions which are (1) low classification error, (2) low memory space, and (3) low training time. In order to
simultaneously fulfill these three conditions, we develop the new piecewise-linear approximate measure (PLAME) for additive kernels.
By incorporating PLAME with the well-known dual coordinate descent method, we theoretically show that this approach can achieve
the above three conditions. Experimental results on twelve real datasets show that our approach can achieve the best trade-off
between the accuracy, memory space, and training time compared with different types of state-of-the-art methods.

Index Terms—PLAME, additive kernels, SVM

F

1 INTRODUCTION

Kernel methods [55] are the commonly used techniques in
classification tasks [12], [29], [30], [32], [34], [55], [64], which
have also received significant attention in both database
[10]–[12], [24], [65], [68], [77] and data mining [30], [50],
[58], [72], [73] communities in the last few years. Recently,
additive kernels have been extensively studied in different
communities, e.g., machine learning [33], [46], [47], [70],
[75], computer vision [35], [43]–[45], [59], [64], and database
[11] due to a wide range of applications. Human activity
detection systems [27], [37], [40], [41], [51], [52], [63], [79]
utilize SVM models with additive kernels to predict human
activities, e.g., walk and sit down, from the sensor data.
Pedestrian detection systems [4], [5], [45], [64] utilize SVM
models with additive kernels to detect pedestrians in an
image. Geoscientists [8], [21] utilize SVM models with addi-
tive kernels to characterize spatial properties of objects in a
scene. Medical scientists [36], [78] utilize SVM models with
additive kernels to identify different types of cancer (e.g.,
colorectal cancer [36] and melanoma skin cancer [78]) in an
image. In above studies, the scholars believe that using SVM
models with additive kernels (e.g., χ2 kernel) can generally
provide superior performance in their applications. Some
representative examples of recent studies are quoted as
follows:

• “... empirical studies have demonstrated the superiority of
the chi2 kernel for image classification ...” [78]

• T. N. Chan is with the Department of Computer Science, Hong Kong
Baptist University, Hong Kong.
E-mail: edisonchan@comp.hkbu.edu.hk

• Z. Li is with the Alibaba Cloud, Hangzhou.
E-mail: huoju.lz@alibaba-inc.com

• L. H. U is with the Department of Computing and Information Science,
University of Macau, Macau.
E-mail: ryanlhu@um.edu.mo

• R. Cheng is with the Department of Computer Science, The University of
Hong Kong, Hong Kong.

• “... we train a SVM classifier with chi-square kernel
for multi-class recognition task, which is beneficial for
classifying the histogram features.” [27]

• “... by adding non-linear additive kernels whose effective-
ness have been validated in computer vision ...” [80]

However, due to the nonlinearity of additive kernel func-
tions, it is time-consuming to train SVM models with this
type of kernel functions, especially for large-scale datasets.
Therefore, many research studies also complain about the
inefficiency issue for using these nonlinear kernel functions.

• “... it was necessary to use support vector machine (SVM)
classifier with nonlinear χ2 kernel which resulted in high
computational cost.” [54]

• “... a dataset with half a million training examples and
each of which consists of thousands of features might take
days to train with any nonlinear kernels, not to mention
using billion or trillion features.” [64]

• “... non-linear SVMs f(x;α) =
∑n

i=1 αiK(xi,x) are
expanded in term of evaluations of a non-linear kernel
function K(x,x′) and are much slower to compute as
well as train.” [60]

Compared with training SVM models using additive
kernels, it is computationally efficient for training linear
SVM models by using some existing libraries, e.g., LIBLIN-
EAR [23] and Pegasos [56]. However, linear SVM models
normally provide inferior accuracy results [47], [64].

To achieve the efficient and accurate classification with
additive kernels, most of the existing studies [33], [35], [43],
[47], [59], [64] utilize the feature approximation techniques,
which construct the new and higher dimensional feature
vectors (e.g., ψ(q) and ψ(p)) for the original feature vectors
(e.g., q and p), in order to approximate the kernel function
K(q,p), i.e.,

ψ(q)Tψ(p) ≈ K(q,p) (1)

Once they obtain these high-dimensional feature vectors
(e.g., ψ(q) and ψ(p)), they train linear SVM models, which

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2

can be more efficient compared with training nonlinear SVM
models.

However, there are two main issues for using the feature
approximation methods. First, most of these feature approx-
imation methods produce high-dimensional feature vectors
(e.g., 9x larger compared with the original feature vectors)
in order to achieve better accuracy, which significantly con-
sume more memory resources. Given the human activity
recognition (casas) dataset [1], [19] with 12.6M training data
points and 37 dimensions (i.e., 3.46GB), the size of the
dataset with new feature vectors can be 31.1GB. Second,
based on our experimental observations, these methods may
not achieve competitive accuracy compared with original
additive kernel SVM models.

To avoid using huge memory resources, another type of
research studies [69], [71], [75] focuses on using a simple
quadratic function to approximate the kernel aggregation
function F (x) =

∑n
i=1 αiyiK(xi,x) [12], where αi and

(xi, yi) denote the ith constant value and the ith point-
label pair, respectively (which will be discussed in detail
in Section 2). In these studies, they show that, by replacing
F (x) with a quadratic function, they can train a SVM model
efficiently by adopting some simple modifications of the
dual coordinate descent method [28] (adopted in the soft-
ware LIBLINEAR [23]). Unlike the feature approximation
approach, these studies do not need a huge amount of
additional space. However, the kernel aggregation function
F (x) may not necessarily follow the form of quadratic
function, which significantly degrades the training accuracy.

Observe that all types of methods cannot simultaneously
fulfill these three conditions: (1) low classification error
(high accuracy), (2) low memory consumption, and (3) low
training time (cf. Table 1). As such, we develop the new
similarity measure, called Piecewise-Linear Approximate
MEasure (PLAME), which directly utilizes the piecewise-
linear function to approximate the additive kernel function
K(xi,x). By adopting some simple modifications of the
dual coordinate descent method [28], we show that this
algorithm can train SVM models with PLAME with slight
time overhead. In addition, we show that this new method
only incurs a few additional space. Furthermore, we also
ensure that the approximation error between PLAME and
K(xi,x) can be theoretically close which results in low
classification error.

TABLE 1: Different methods for training SVM with additive
kernels.

Method Classification Memory Training
error space time

Kernel SVM solver [13] low low high
Linear SVM solver [23], [28] high low low

Feature approximation
[35], [47], [59], [60] high high low
[7], [17], [33], [64]

Function approximation high low low
[69], [71], [75]
PLAME (ours) low low low

The rest of the paper is organized as follows. We first
review the background of linear SVM, kernel SVM, and
additive kernels in Section 2. Then, we define our new
similarity measure PLAME and illustrate how to utilize
PLAME to train SVM models with theoretical analysis in

Section 3. Next, we present experimental results on twelve
real datasets in Section 4. After that, we review existing
work in Section 5. Lastly, we conclude in Section 6. The
appendix can be found in Section 7.

2 PRELIMINARIES

In this section, we first review the fundamental concept of
linear SVM classification and revisit the famous algorithm,
i.e., dual coordinate descent algorithm [28], in Section 2.1.
Then, we illustrate the concept of kernel SVM in Section 2.2.
Lastly, we also review the additive kernels in Section 2.3.
Table 2 summarizes the commonly used symbols in this
paper.

TABLE 2: Symbols.

Symbol Description
n Number of data points in the training dataset
d Dimensionality of data points

F (x) Kernel aggregation function
K(xi,x) Kernel function

xi The ith vector in the training dataset
x Any vector in the testing dataset
x
(`)
i The `th dimensional value of xi

x(`) The `th dimensional value of x
k(x

(`)
i , x(`)) One-dimensional kernel function

kPL(x
(`)
i , x(`))

Piecewise-linear approximate measure
(PLAME) for k(x(`)i , x(`))

f(x(`)) One-dimensional kernel aggregation function
fPL(x

(`)) Approximation of f(x(`))
P Number of intervals in kPL(x

(`)
i , x(`))

I Set of intervals in kPL(x
(`)
i , x(`))

Ip The pth interval in I (with the range [lp, up])
mx(`) (Ip) The slope of kPL(x

(`)
i , x(`)) in the pth interval Ip

cx(`) (Ip) The intercept of kPL(x
(`)
i , x(`)) in the pth interval Ip

ε The error parameter

E(l, u) The maximum error between k(x(`)i , x(`))

and kPL(x
(`)
i , x(`)) with any interval I = [l, u]

2.1 Linear SVM classification
Given the set, with size n, of point-label pairs (xi, yi), where
each xi is the d-dimensional vector and each yi is either 1
or -1 to denote the positive or negative classes, respectively,
the goal of linear SVM classification [55] is to find the linear
function y = wTx + b which can separate these data points
into two classes (cf. Figure 1).

𝐰𝑇𝐱 + 𝑏 < 0

𝐰𝑇𝐱 + 𝑏 > 0

Fig. 1: Linear SVM classification: using the linear line wTx+
b = 0 to classify the data points into two classes (red circle,
wTx + b > 0, and blue triangle, wTx + b < 0).

To find the best linear function, we need to solve the
following primal (optimization) problem, where C is the
penalty parameter [55].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 3

minimize
w

1

2
||w||2 + C

n∑
i=1

ζi

such that yi(w
Txi + b) ≥ 1− ζi where i = 1..n

ζi ≥ 0 where i = 1..n

(P)

However, instead of solving the primal problem, most
of the SVM classification algorithms, including dual coor-
dinate descent [28] and sequential minimal optimization
(SMO) methods [55], solve the equivalent dual form of
this problem which aims to find the n-dimensional vector
α = [α1 α2 · · · αn]T .

minimize
α

1

2
αTQα− 1Tα

such that 0 ≤ αi ≤ C where i = 1,...,n
(D)

where 1 is the n-dimensional vector with all entries one and
Q is the n× n matrix with Qij = yix

T
i xjyj .

Based on this vector α (cf. Equations 2 and 3), they can
obtain the parameters w and b of linear function [55].

w =
n∑

i=1

αiyixi (2)

b = ȳ −wT x̄ (3)

where the corresponding ᾱ for (x̄, ȳ) fulfills 0 < ᾱ < C .
To solve the linear SVM classification problem, existing

software LIBLINEAR [28] adopts the dual coordinate de-
scent algorithm (cf. Algorithm 1) to solve the optimization
problem (D).

Algorithm 1 Dual Coordinate Descent Algorithm [28]

1: procedure DCD({(x1, y1), ..., (xn, yn)}, C)
2: α← 0,w← 0
3: while α is not optimal do
4: for v ← 1 to n do
5: G← yvw

Txv − 1
6: T ← αv

7: αv ← min(max(αv − G
Qvv

, 0), C)
8: w← w + (αv − T)yvxv

9: Find ᾱ in α such that 0 < ᾱ < C
10: b← ȳ −wT x̄ . Equation 3
11: return w and b

In Algorithm 1, the bottlenecks of this algorithm are to
compute the aggregation operation wTxv (line 5) and to
update the vector w (line 8) which take O(d) time in each
inner iteration (cf. line 4). Therefore, each outer iteration
(line 3) takes O(nd) time.

2.2 Kernel SVM classification
Even though linear SVM classification can be efficient in
the training phase, the accuracy result is normally inferior
as the intrinsic structure of these datasets can be complex
which cannot be simply separated by any linear functions
(cf. Figure 2).

To handle nonlinear SVM classification, existing studies
[13], [55] replace each vector x with the high dimensional
(possibly infinite-dimensional) vector φ(x) (cf. Figure 2),
where:

K(xi,x) = φ(xi)
Tφ(x) (4)

𝐰𝑇𝜙 𝐱 + 𝑏 < 0

𝐰𝑇𝜙(𝐱) + 𝑏 = 0

𝐰𝑇𝜙 𝐱 + 𝑏 > 0

Fig. 2: Kernel SVM classification: using the nonlinear func-
tion wTφ(x) + b = 0 to classify the data points into two
classes (red circle, wTφ(x) + b > 0, and blue triangle,
wTφ(x) + b < 0).

We call K(xi,x) as the kernel function. Even though the
vector φ(xi) can be possibly infinite-dimensional [55], the
kernel function can be efficiently computed (e.g., O(d) time
for additive kernels).

With the concept of kernel function (cf. Equation 4), we
can replace Qij = yix

T
i xjyj by yiK(xi,xj)yj in the opti-

mization problem (D). However, observe from Equation 5
that w depends on the possibly infinite-dimensional vector
φ(xi). We cannot maintain the explicit format of w.

w =
n∑

i=1

αiyiφ(xi) (5)

Nevertheless, we can still reuse Algorithm 1, with slight
modifications, to obtain the best α for kernel SVM classifi-
cation. The reason is the main operation, gradient computa-
tion, in Algorithm 1 (cf. line 5) only depends on wTφ(xv) (in
kernel SVM). Therefore, we can replace it by the following
kernel aggregation function (cf. Equation 6).

F (x) = wTφ(x) =
n∑

i=1

αiyiK(xi,x) (6)

In order to support kernel SVM classification, we only
need to modify Algorithm 1 by replacing line 5 with G ←
yvF (xv) − 1, removing line 8, and replacing b (line 10, i.e.,
Equation 3) by:

b = ȳ − F (x̄) (7)

The pseudocode, based on the above modifications, is
described in Algorithm 2.

Algorithm 2 Dual Coordinate Descent Algorithm (Kernel
Version)

1: procedure DCDKERNEL({(x1, y1), ..., (xn, yn)}, C)
2: α← 0
3: while α is not optimal do
4: for v ← 1 to n do
5: G← yvF (xv)− 1
6: T ← αv

7: αv ← min(max(αv − G
Qvv

, 0), C)

8: Find ᾱ in α such that 0 < ᾱ < C
9: b← ȳ − F (x̄) . Equation 7

10: return α and b

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 4

However, since the evaluation of kernel aggregation
function (cf. Equation 6) takes O(nd) time, computing one
outer iteration (line 3 in Algorithm 2) takes O(n2d) time
which is infeasible for medium to large-scale datasets (e.g.,
n = 100000). As such, existing solution for kernel SVM
classification is still based on SMO method [55] (used in
LIBSVM [13]), which is still slow in practice.

2.3 Additive Kernels
Additive kernels have been successfully used in both com-
puter vision [44], [45], [59], [64] and machine learning [22],
[46], [47], [70] communities. Given xi and x as two d-
dimensional vectors, where x(`)i and x(`) denote the `th di-
mensional values of these two vectors, respectively, Table 3
summarizes four famous additive kernel functions, which
are χ2, JS, intersection, and Hellinger kernels.

TABLE 3: Four representative additive kernel functions.

Kernel name K(xi,x)

χ2
d∑

`=1

2x
(`)
i x(`)

x
(`)
i +x(`)

JS
d∑

`=1

1
2
x
(`)
i log2

(
x
(`)
i +x(`)

x
(`)
i

)
+ 1

2
x(`) log2

(
x
(`)
i +x(`)

x(`)

)
Intersection

∑d
`=1 min(x

(`)
i , x(`))

Hellinger
d∑

`=1

√
x
(`)
i x(`)

Observe that these kernel functions exhibit the following
additive property [11], [45] (cf. Definition 1).

Definition 1. If the kernel functionK(xi,x) is the sum of d one-
dimensional kernel functions (denoted as k(x

(`)
i , x(`))), K(xi,x)

is the additive kernel function.

K(xi,x) =
d∑

`=1

k(x
(`)
i , x(`)) (8)

As an example, k(x
(`)
i , x(`)) =

2x
(`)
i x(`)

x
(`)
i +x(`)

for χ2 kernel

function. Based on Definition 1, we can decompose the
kernel aggregation function (cf. Equation 6) into the addi-
tion of d one-dimensional kernel aggregation functions (cf.
Lemma 1). The proof of this lemma can be found from [11],
[45].

Lemma 1. Let f(x(`)) be the one-dimensional kernel aggregation
function, where:

f(x(`)) =
n∑

i=1

αiyik(x
(`)
i , x(`)) (9)

Then, we can express F (x) as:

F (x) =
d∑

`=1

f(x(`)) (10)

Recall from Section 2.2 that the bottleneck of the training
phase for kernel SVM classification is the computation of
the kernel aggregation function, e.g., evaluating the gradient
(line 5 in Algorithm 2) in the training phase. As such, if
we can efficiently evaluate Equation 10, we can significantly

boost the efficiency performance for training additive kernel
SVM models. Since Equation 10 is the addition of each
f(x(`)), which is independent for each dimension `, our
goal is to develop fast method for computing f(x(`)) (cf.
Equation 9).

3 PLAME: PIECEWISE-LINEAR APPROXIMATE
MEASURE

To provide the fast evaluation of the one-dimensional
kernel aggregation function f(x(`)), we propose a novel
approximate measure, which is kPL(x

(`)
i , x(`)), to replace

k(x
(`)
i , x(`)) in Equation 9. As a remark, we denote x

(`)
i

as the `th dimensional value of the ith training data. First,
after we know the region, e.g., [L(`), U(`)]1, of x(`)i for each
dimension, we can partition this region into P intervals
{I1, I2, ..., IP }, where Ip = [lp, up] (1 ≤ p ≤ P). Then,
we can define this piecewise-linear approximate measure
(PLAME) based on these intervals (cf. Equation 11).

kPL(x
(`)
i , x(`)) =


mx(`)(I1)x

(`)
i + cx(`)(I1) if x(`)i ∈ I1

mx(`)(I2)x
(`)
i + cx(`)(I2) if x(`)i ∈ I2

...
...

mx(`)(IP)x
(`)
i + cx(`)(IP) if x(`)i ∈ IP

(11)
where the slope mx(`)(Ip) and the intercept cx(`)(Ip) are
denoted as:

mx(`)(Ip) =
2x(`)

2

(x(`) + up)(x(`) + lp)
(12)

cx(`)(Ip) =
2x(`)lpup

(x(`) + up)(x(`) + lp)
(13)

We utilize χ2-kernel as an example, i.e., k(x
(`)
i , x(`)) =

2x
(`)
i x(`)

x
(`)
i +x(`)

. Figure 3 shows one possible choice of PLAME

where we partition this curve with three intervals (P = 3),
i.e., I1 = [0, 0.2], I2 = [0.2, 0.4] and I3 = [0.4, 1].

function value

𝑥𝑖
(ℓ)

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

I1 I2 I3

𝑚𝑥(ℓ) I1 𝑥𝑖
(ℓ)

+ 𝑐𝑥(ℓ) I1

k(𝑥𝑖
(ℓ)

,𝑥(ℓ)) =
2𝑥𝑖

(ℓ)
𝑥(ℓ)

𝑥𝑖
(ℓ)

+ 𝑥(ℓ)

k𝑃𝐿(𝑥𝑖
(ℓ)

,𝑥(ℓ))

𝑚𝑥(ℓ) I2 𝑥𝑖
(ℓ)

+ 𝑐𝑥(ℓ) I2

𝑚𝑥(ℓ) I3 𝑥𝑖
(ℓ)

+ 𝑐𝑥(ℓ) I3

Fig. 3: PLAME for χ2 kernel, where L(`) = 0 and U(`) = 1.

Since χ2 kernel is the most famous one, which is fre-
quently used in many recent research studies (e.g., [27],

1. Since we need to perform normalization before training SVM
classifier [13], the region for each dimension is usually [0, 1].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 5

[78]), among these four additive kernels, we mainly focus
on χ2 kernel in this paper. Like Figure 3, we can also utilize
PLAME (cf. Equation 11) to approximate other additive
kernel functions (cf. Table 3). Since the concept is similar,
we omit the details in this paper.

3.1 Efficient Training with PLAME

With the concept of PLAME (cf. Equation 11), we can replace
the additive kernel function from K(xi,x) (cf. Equation 8)
to KPL(xi,x) (cf. Equation 14) and the one-dimensional
kernel aggregation function from f(x(`)) (cf. Equation 9) to
fPL(x(`)) (cf. Equation 15).

KPL(xi,x) =
d∑

`=1

kPL(x
(`)
i , x(`)) (14)

fPL(x(`)) =
n∑

i=1

αiyikPL(x
(`)
i , x(`)) (15)

We state that fPL(x(`)) can be evaluated in O(P) time
(cf. Lemma 2), which can be significantly faster than the
evaluation of f(x(`)) (i.e., O(n) time) if P << n.

Lemma 2. fPL(x(`)) can be computed in O(P) time if A`(Ip)
and B`(Ip) are stored in advance, where:

A`(Ip) =
∑

x
(`)
i ∈Ip

αiyix
(`)
i (16)

B`(Ip) =
∑

x
(`)
i ∈Ip

αiyi (17)

Proof. Since each x
(`)
i belongs to only one interval, we can

express this equation as:

fPL(x(`)) =
P∑

p=1

∑
x
(`)
i ∈Ip

αiyi(mx(`)(Ip)x
(`)
i + cx(`)(Ip))

=
P∑

p=1

mx(`)(Ip)A`(Ip) +
P∑

p=1

cx(`)(Ip)B`(Ip)

Since A`(Ip) and B`(Ip) are independent of x(`), we can
compute fPL(x(`)) in O(P) time once we have stored
A`(Ip) and B`(Ip) in advance.

In Lemma 2, we have stated that fPL(x(`)) can be
computed in O(P) time once A`(Ip) and B`(Ip) can be
stored in advance. However, during the training process, the
parameters αi can be updated in each iteration. Therefore,
we also need to efficiently maintain the parameters A`(Ip)
and B`(Ip) for each dimension `. Fortunately, dual coordi-
nate descent method only updates one αi in each iteration.
We can therefore update all A`(Ip) and B`(Ip) in O(Pd)
time, using the similar concept of line 8 in Algorithm 1.
Algorithm 3 shows the revised dual coordinate descent
method for handling PLAME. We further show that each
outer iteration (line 6) of Algorithm 3 takes O(nPd) time
in Theorem 1. In practice, we have P << n, which will be
discussed in detail from Section 3.2 to Section 3.4. Therefore,
Algorithm 3 is significantly faster than Algorithm 2 (with
O(n2d) time) and slightly slower than the linear SVM solver
(with O(nd) time), i.e., Algorithm 1.

Algorithm 3 Dual Coordinate Descent Algorithm for
PLAME

1: procedure DCDPLAME({(x1, y1), ..., (xn, yn)}, C)
2: α← 0
3: for `← 1 to d do
4: for p← 1 to P do
5: A`(Ip)← 0, B`(Ip)← 0

6: while α is not optimal do
7: for v ← 1 to n do
8: G← yv

∑d
`=1 fPL(x

(`)
v)− 1

9: T ← αv

10: αv ← min(max(αv − G
Qvv

, 0), C)
11: for `← 1 to d do
12: p← find(x(`)v) . find Ip (O(P) time)
13: A`(Ip)← A`(Ip) + (αv − T)yvx

(`)
v

14: B`(Ip)← B`(Ip) + (αv − T)yv

15: Find ᾱ in α such that 0 < ᾱ < C
16: b← ȳ − FPL(x̄)
17: return b, A`(Ip) and B`(Ip), where 1 ≤ ` ≤ d and

1 ≤ p ≤ P

Theorem 1. Each outer iteration (line 6) in Algorithm 3 takes
O(nPd) time.

Proof. The main bottlenecks of this algorithm are in the
evaluation of gradient G (line 8) and the update of the
parameters A`(Ip) and B`(Ip) (lines 12 to 14) which can
be computed in O(Pd) time. As such, one outer iteration
takes O(nPd) time.

Unlike existing feature approximation methods (e.g.,
[59], [64]) for additive kernel functions, this method only
needs additional space for storing A`(Ip) and B`(Ip) which
only takes additional O(Pd) space (cf. Lemma 3). Due to
the few additional space, we can avoid using the huge
amount of precious memory resources for training the large-
scale datasets, especially for using the single computer with
limited memory (e.g., 8GB/16GB).

Lemma 3. The space complexity of Algorithm 3 is O(nd+Pd).

3.2 How to Minimize P with Error Guarantee in
PLAME?

Compared with linear SVM, which takes O(nd) time for
the outer iteration (cf. line 3 in Algorithm 1), training
kernel SVM with PLAME has additional overhead with the
number of intervals P (cf. Theorem 1). However, the larger
the number P , the more accurate between kPL(x

(`)
i , x(`))

and k(x
(`)
i , x(`)), i.e., the smaller the error |k(x

(`)
i , x(`)) −

kPL(x
(`)
i , x(`))| (cf. Figure 3). Therefore, there is a trade-off

between the accuracy and the training time.
Since our final goal is to provide the better approxima-

tion for the additive kernel K(xi,x) in order to provide
better accuracy, we propose to specify the error parameter ε,
such that:

|k(x
(`)
i , x(`))− kPL(x

(`)
i , x(`))| ≤ ε (18)

In Lemma 4, we show that once we specify for each
dimension `, |k(x

(`)
i , x(`)) − kPL(x

(`)
i , x(`))| ≤ ε, we can

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 6

obtain the good approximation KPL(xi,x) (cf. Equation 14)
for K(xi,x) with bounded error.

Lemma 4. For each dimension `, if:

|k(x
(`)
i , x(`))− kPL(x

(`)
i , x(`))| ≤ ε

we obtain: |KPL(xi,x)−K(xi,x)| ≤ εd.

Proof. We have:

k(x
(`)
i , x(`))− ε ≤ kPL(x

(`)
i , x(`)) ≤ k(x

(`)
i , x(`)) + ε

By taking summation in both sides with respect to `, we
have:

K(xi,x)− εd ≤ KPL(xi,x) ≤ K(xi,x) + εd

Hence, we have proved the claim.

As stated in Lemma 4, we need to ensure the largest
gap between each linear segment in kPL(x

(`)
i , x(`)) and

k(x
(`)
i , x(`)) should be at most ε for every possible x(`) in

order to achieve the theoretical guarantee. Here, we focus on
the simple case (only one linear segment). Given the initial
position l, we need to find u such that the gap L(x

(`)
i , x(`))

(cf. Equation 19) is smaller than ε (cf. Figure 4).

L(x
(`)
i , x(`)) = k(x

(`)
i , x(`))− (mx(`)(I)x

(`)
i + cx(`)(I)) (19)

where the slope mx(`)(I) and the intercept cx(`)(I) (with
respect to the interval I = [l, u]) are represented by Equa-
tion 12 and Equation 13, respectively.

Therefore, our goal is to ensure the maximum error (gap)
value E(l, u), i.e., the value of the following optimization
problem (G), is smaller than ε.

E(l, u) = maximize
x
(`)
i ,x(`)

L(x
(`)
i , x(`))

such that l ≤ x(`)i ≤ u
L ≤ x(`) ≤ U

(G)

where [L,U] is the possible region of x(`), which is normally
[0, 1], based on the normalization process of SVM [13].

function value

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

𝑥𝑖
(ℓ)

k(𝑥𝑖
(ℓ)

,𝑥(ℓ)) =
2𝑥𝑖

(ℓ)
𝑥(ℓ)

𝑥𝑖
(ℓ)

+ 𝑥(ℓ)

𝑥(ℓ) = 0.2

𝑥(ℓ) = 0.1l

u

Fig. 4: Find the position u (solid red line) such that it
achieves the gap L(x

(`)
i , x(`)) with error guarantee ε, using

the χ2 kernel.

In order to find the best u, i.e., the linear segment which
can cover the largest region but it still fulfills the ε guarantee,

we need to develop the algorithm to search for this value in
the x(`)i -axis (cf. Figure 4). However, one major challenge is
that there are infinite numbers of possible u in the search
space. In Lemma 5, we show that E(l, u) is monotonic
increasing with respect to u. Based on this property, we
can use the exponential search [6] to find the best u, which
avoids searching the infinite numbers of possible u. We
leave the proof of this lemma in Section 7.1.

Lemma 5. Given the initial position l, and two positions u1 and
u2 in x(`)i -axis, we have E(l, u1) ≤ E(l, u2) if u1 ≤ u2.

Even though the above method can find the best u
given the initial position l, we still need to find the set of
intervals (I in Algorithm 4) which covers the whole region
[L(`), U(`)] (cf. Figure 3). As such, we propose the optimal
curve partition method (OCPM). The idea of this method is
simple. We start the initial position as L(`), i.e., l = L(`).
After that, we iteratively find the best u (with E(l, u) ≤ ε)
and then set the new l as this u until the new l reaches U(`)
(cf. Algorithm 4).

Algorithm 4 Optimal Curve Partition Method (OCPM)

1: procedure OCPM(ε, d, [L(`), U(`)])
2: l← L(`), I ← φ
3: while l < U(`) do
4: unext ← arg maxuE(l, u), s.t. E(l, u) ≤ ε . [6]
5: unext ← min(u, U(`))
6: I ← I ∪ {[l, unext]}
7: l← unext

8: return I

Although OCPM is simple, this method can achieve the
minimum number of intervals (i.e., optimal), as stated in
Theorem 2. We leave the proof in Section 7.2.

Theorem 2. Optimal Curve Partition Method (OCPM) produces
the minimum number of intervals P for PLAME which fulfills the
error parameter ε (cf. Equation 18).

3.3 How to Solve the Optimization Problem (G)?
In Section 3.2, we utilize the exponential search algorithm to
obtain the best u, i.e., line 4 in Algorithm 4. Observe that this
method tries different possible values of u and regards the
optimization problem (G) as the black box. However, there
is still one remaining question. Given the l and u, how can
we solve the optimization problem (G)?

In order to solve the optimization problem (G), we can
adopt the commonly used coordinate descent method [67]
(cf. Algorithm 5).

In Lemma 6, we show that Algorithm 5 converges to
the global optimal solution of the optimization problem (G),
given any l and u. We leave the proof of this lemma in
Section 7.3.

Lemma 6. Given any l and u, Algorithm 5 converges to the
global optimal solution of the optimization problem (G).

3.4 Case Study for χ2 Kernel: The Worst-case Effi-
ciency for Training SVM with PLAME
Recall that each outer iteration of Algorithm 3 (line 6) is
at most O(nPd) time (cf. Theorem 1), which is worse than

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 7

Algorithm 5 Coordinate Descent for (G)

1: procedure COORD DESCENT(l, u, L, U)
2: x

(`)
i ← u x(`) ← U

3: η ← 0.001 . step size
4: while x(`)i and x(`) does not attain optimal do

5: x
(`)
i ← min

(
max

(
x
(`)
i + η

∂L(x
(`)
i ,x(`))

∂x
(`)
i

, l
)
, u
)

6: x(`) ← min
(

max
(
x(`) + η

∂L(x
(`)
i ,x(`))

∂x
(`)
i

,L
)
,U
)

7: return L(x
(`)
i , x(`))

Algorithm 1 for training linear SVM by at most P times.
Observe that the number of intervals P only depends on ε
(cf. Figure 4), we vary ε from 0.001 to 0.009 and investigate
how the number of intervals P is affected by this error
parameter ε (cf. Figure 5).

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

0.001 0.003 0.005 0.007 0.009

#
 o

f
in

te
rv

al
s

ε

PLAME

Fig. 5: Case study on how the number of intervals P is
affected by ε, where K(xi,x) is χ2 kernel.

As a remark, the curve in Figure 5 only depends on
the kernel function (cf. Figure 4), but not depends on the
datasets. Therefore, we can know how the response time for
training SVM with PLAME is worse than training the linear
SVM model in advance, given any ε. As an example, once
we set ε = 0.005, the number of intervals P is 8. Therefore,
we expect the response time for SVM with PLAME is slower
than linear SVM by roughly 8 times.

4 EXPERIMENTS

We first introduce the experimental setting in Section 4.1.
Next, we test how the parameter ε affects the accuracy and
efficiency of SVM with PLAME in Section 4.2. Then, we
investigate how the memory space of the feature approxi-
mation methods affects their accuracy in Section 4.3. After
that, we test the accuracy and efficiency of all methods in
Section 4.4 and Section 4.5, respectively. Lastly, we summa-
rize the experimental results for all methods in Section 4.6.

4.1 Experimental Setting
In our experiments, we have used twelve datasets for train-
ing SVM classifiers which are summarized in Table 4. All
these datasets can be found from either the LIBSVM website
[13]2 or the UCI machine learning repository [1]. We divide
each dataset into two parts which are the training (ntr) and
testing (nt) datasets. Since the χ2 kernel function is famous,

2. https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

we choose this kernel for conducting our experiments in this
section. Some additional experiments for other kernels can
be found in Section 7.4.

TABLE 4: Datasets.

Name ntr nt dim Total data size (MB) Ref.
skin 220551 24506 3 5.61 [13]

ijcnn1 127522 14169 22 23.78 [13]
cod-rna 331152 157413 8 29.82 [13]

miniboone 117057 13007 50 49.62 [1]
home 836091 92900 10 70.88 [1]
SensIT 78823 19705 100 75.17 [13]

covtype b 522910 58102 54 239.37 [13]
susy 4000000 1000000 18 686.65 [13]

hepmass 6300000 700000 28 1495.36 [1]
higgs 8800000 2200000 28 2349.85 [13]
casas 12560880 1395653 37 3939.75 [1], [19]

epsilon 400000 100000 2000 7629.39 [13]

Table 5 summarizes different state-of-the-art methods
for SVM classification using additive kernels which are di-
vided into three classes. For the first class (i.e., open-source-
library-based methods), we modify the LIBSVM library
[13] to support the additive kernel functions. In addition,
we also train linear SVM models with the LIBLINEAR
library [23]. For the second class (i.e., feature approximation
methods), both VLFeat [59], Chebyshev [35], PL [47], NN
[64], LD [17], [18], and ENL [7], [49] construct the high-
dimensional feature vectors in order to capture the similar
kernel function value K(xi,x) (cf. Equation 8). For the third
class (i.e., function approximation methods), PmSVM [69],
[71] adopts the single quadratic function to approximate
each one-dimensional kernel aggregation function f(x(`))
(cf. Equation 9). Furthermore, our method, PLAME, uti-
lizes the piecewise-linear function to approximate the one-
dimensional kernel function (cf. Figure 3) with bounded
error. We implemented all methods in C++3 and conducted
experiments on an Intel i7 3.2GHz PC. In this paper, we mea-
sure the training time (sec) and accuracy (cf. Equation 20,
based on [13]) of each method.

Accuracy =
Number of correctly classified testing data

Number of testing data (nt)
(20)

As a remark, we only report the results in which the space
consumption is within 16GB and the training time is within
259200 (sec) (i.e., three days).

4.2 Effect of ε for SVM with PLAME
Recall from Section 3 that both the efficiency and accuracy
of training SVM models with PLAME depend on the error
parameter ε. In this section, we vary the ε from 0.001 to
0.009 and report both the accuracy and efficiency results for
PLAME in two datasets, skin and casas.

In Figure 6, observe that once we reduce the error
parameter ε from 0.009 to 0.001, the accuracy increases in
both datasets (cf. Figures 6a and 6b) since we can achieve
more accurate approximation for the kernel function (cf.
Lemma 4). However, as the number of intervals increases
with smaller error ε (cf. Figure 5), it takes longer time for
each iteration of Algorithm 3 (cf. Theorem 1). Therefore, the

3. The source code of our method PLAME can be found in this Github
link https://anonymous.4open.science/r/PLAME-Code-0877/.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 8

TABLE 5: Methods.

Type Open-source library Feature approximation Function approximation
Method LIBSVM LIBLINEAR VLFeat Chebyshev PL NN LD ENL PmSVM PLAME

Ref. [13] [23] [59] [35] [47] [64] [17], [18] [7], [49] [69], [71] ours

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.001 0.003 0.005 0.007 0.009

Ac
cu

ra
cy

ε

PLAME
 0.6

 0.62
 0.64
 0.66
 0.68
 0.7

 0.72
 0.74
 0.76
 0.78
 0.8

0.001 0.003 0.005 0.007 0.009

Ac
cu

ra
cy

ε

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.001 0.003 0.005 0.007 0.009

Ti
m

e
(s

ec
)

ε

 0

 5000

 10000

 15000

 20000

 25000

0.001 0.003 0.005 0.007 0.009

Ti
m

e
(s

ec
)

ε

(a) Accuracy (skin) (b) Accuracy (casas) (c) Efficiency (skin) (d) Efficiency (casas)

Fig. 6: Accuracy and efficiency for SVM classification with PLAME, varying ε from 0.001 to 0.009, in different datasets.

VLFeat � Chebyshev 5 PL© NN + LD 4 ENL × PLAME 3

 0.6

 0.7

 0.8

 0.9

 1

x1 x3 x5 x7 x9

Ac
cu

ra
cy

Dimensionality

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

x1 x3 x5 x7 x9

Ac
cu

ra
cy

Dimensionality

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

x1 x3 x5 x7 x9
Ac

cu
ra

cy

Dimensionality

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

x1 x3 x5 x7 x9

Ac
cu

ra
cy

Dimensionality

(a) skin (b) ijcnn1 (c) cod-rna (d) miniboone

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

x1 x3 x5 x7 x9

Ac
cu

ra
cy

Dimensionality

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

x1 x3 x5 x7 x9

Ac
cu

ra
cy

Dimensionality

 0.6
 0.62
 0.64
 0.66
 0.68
 0.7

 0.72
 0.74
 0.76
 0.78
 0.8

x1 x3 x5 x7 x9

Ac
cu

ra
cy

Dimensionality

 0.6

 0.65

 0.7

 0.75

 0.8

x1 x3 x5 x7 x9
Ac

cu
ra

cy
Dimensionality

(e) home (f) SensIT (g) covtype b (h) susy

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

x1 x3 x5 x7 x9

Ac
cu

ra
cy

Dimensionality

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

x1 x3 x5 x7 x9

Ac
cu

ra
cy

Dimensionality

 0.6
 0.62
 0.64
 0.66
 0.68
 0.7

 0.72
 0.74
 0.76
 0.78

x1 x3 x5 x7 x9

Ac
cu

ra
cy

Dimensionality

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

x1 x3 x5 x7 x9

Ac
cu

ra
cy

Dimensionality

(i) hepmass (j) higgs (k) casas (l) epsilon

Fig. 7: Trade-off between the memory space (i.e., dimensionality of the feature vectors) and the accuracy of feature
approximation methods.

TABLE 6: Accuracy of all methods (n.a.: The running time of this method takes more than 3 days or the memory
consumption of this method is more than 16GB.), where the top-2 accuracy values are in bold type for each dataset.

Method skin ijcnn1 cod-rna miniboone home SensIT covtype b susy hepmass higgs casas epsilon
LIBSVM 0.992 0.986 0.957 0.891 0.88 0.918 0.796 n.a. n.a. n.a. n.a. n.a.

LIBLINEAR 0.895 0.919 0.623 0.825 0.808 0.859 0.762 0.726 0.832 0.619 0.71 0.879
VLFeat 0.927 0.943 0.79 0.882 0.876 0.879 0.779 0.777 0.845 0.689 n.a. n.a.

Chebyshev 0.942 0.924 0.717 0.85 0.873 0.877 0.778 0.779 0.844 0.683 n.a. n.a.
PL 0.914 0.958 0.714 0.885 0.877 0.875 0.783 0.765 0.847 0.684 n.a. n.a.
NN 0.88 0.914 0.639 0.796 0.816 0.853 0.748 0.715 0.83 0.634 n.a. n.a.
LD 0.949 0.93 0.757 0.826 0.814 0.877 0.773 0.773 0.845 0.687 n.a. n.a.

ENL 0.925 0.905 0.462 0.879 0.863 0.85 0.6 0.773 0.806 0.608 n.a. n.a.
PmSVM 0.919 0.921 0.734 0.838 0.804 0.871 0.778 0.745 0.842 0.643 0.728 0.842
PLAME 0.988 0.983 0.923 0.886 0.878 0.912 0.784 0.796 0.883 0.697 0.78 0.933

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 9

 0

 50

 100

 150

 200

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

Ti
m

e
(s

ec
)

Methods

 0

 50

 100

 150

 200

 250

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

Ti
m

e
(s

ec
)

Methods

 0

 200

 400

 600

 800

 1000

 1200

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

Ti
m

e
(s

ec
)

Methods

 0

 300

 600

 900

 1200

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

Ti
m

e
(s

ec
)

Methods

(a) skin (b) ijcnn1 (c) cod-rna (d) miniboone

 0

 3000

 6000

 9000
 12000

 15000

 18000

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

Ti
m

e
(s

ec
)

Methods

 0

 60

 120

 180

 240

 300

 360

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

Ti
m

e
(s

ec
)

Methods

 0

 4000

 8000

 12000

 16000

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

Ti
m

e
(s

ec
)

Methods

 0

 600

 1200

 1800

 2400

 3000

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

n.a.

Ti
m

e
(s

ec
)

Methods

(e) home (f) SensIT (g) covtype b (h) susy

 0

 1000

 2000

 3000

 4000

 5000

 6000

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

n.a.

Ti
m

e
(s

ec
)

Methods

 0

 2000

 4000

 6000

 8000

 10000

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

n.a.

Ti
m

e
(s

ec
)

Methods

 0

 5000

 10000

 15000

 20000

 25000

 30000

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

n.a. n.a.

Ti
m

e
(s

ec
)

Methods

 0

 6000

 12000

 18000

 24000

 30000

 36000

VL
Fe

at

Ch
eb

ys
he

v PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

n.a. n.a.

Ti
m

e
(s

ec
)

Methods

(i) hepmass (j) higgs (k) casas (l) epsilon

Fig. 8: Response time (sec) for all methods in the training phase, fixing the dimensionality of feature approximation methods
as x7 of the original dimensionality.

training time is also longer (cf. Figures 6c and 6d). We notice
that the accuracy is stable when we choose ε = 0.005. As
such, we choose ε = 0.005 by default in later experiments.

4.3 Effect of Memory Space for Feature Approximation
Methods
Recall that feature approximation methods (cf. Table 1) need
to generate the high-dimensional feature vectors in order to
achieve the good accuracy. In this experiment, we compare
how the memory space affects the accuracy of all feature
approximation methods in different datasets, by varying the
dimensionality of the feature vectors with x1, x3, x5, x7,
and x9 of the dimensionality of the original feature vectors
(cf. Figure 7). As a remark, both the feature approximation
methods NN and PL do not support generating the feature
vector with x1 feature dimensionality. Therefore, we omit
those points in these figures. Here, we also report the results
of our method PLAME, which follows the default setting,
i.e., ε = 0.005, as the reference. Unlike the feature approx-
imation methods, PLAME only uses the original feature
vector. As such, we only report the accuracy result with x1
feature dimensionality.

In Figure 7, observe that once we increase the dimen-
sionality, most of these feature approximation methods can
achieve higher accuracy. However, the accuracy of these
methods is normally inferior compared with our method
PLAME. In addition, this type of methods can significantly
consume more precious memory resources, especially for

large scale datasets. Using the casas dataset as an example,
once we increase the dimensionality to x5, the space con-
sumption of the feature vectors is roughly 17.3GB, which
cannot fit in a single PC with 16GB memory. However,
our method PLAME only needs a few additional space
(cf. Lemma 3) for training. Here, we observe that these
feature approximation methods can provide stable accuracy
in most of these datasets with x7 dimensionality. Therefore,
we choose x7 dimensionality as default in later experiments.

4.4 Accuracy of All Methods

In this section, we compare the accuracy of our method
PLAME with other methods. In Table 6, observe that LIB-
SVM normally provides the highest accuracy for small
to medium-scale datasets compared with other methods.
However, once the size of the datasets (e.g., susy, hepmass,
casas, and epsilon) becomes larger, LIBSVM cannot train the
classifiers within three days due to the high time complexity
of this method. Even though our method PLAME may
not achieve the best performance for all datasets, PLAME
can achieve the competitive accuracy (i.e., top-2 accuracy
values) without using a huge amount of training time com-
pared with the best method LIBSVM. Therefore, PLAME
can support large-scale datasets that cannot be supported
by LIBSVM. On the other hand, PLAME can achieve the
best accuracy compared with feature approximation and
function approximation methods.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 10

4.5 Efficiency of All Methods

We proceed to compare the efficiency of all methods. Since
all the approximation methods either directly adopt the lin-
ear SVM solver (e.g., LIBLINEAR) for the feature maps with
higher dimensionality (i.e., feature approximation methods)
or adopt the slightly modified linear SVM solver (i.e.,
function approximation methods), all of them can achieve
similar response time for training the SVM models (cf.
Figure 8), which are significantly faster than LIBSVM (based
on the inefficient kernel (nonlinear) SVM solver). In practice,
PLAME is at most 8.55x slower than the fastest method
LIBLINEAR, which is roughly similar to the worst-case
efficiency performance of PLAME (cf. Figure 5) with default
setting (i.e., P = 8 with ε = 0.005). As a remark, we omit
the results of all feature approximation methods in casas
and epsilon datasets, as the memory consumptions are more
than 16GB. On the other hand, the training time of LIBSVM
method in susy, hepmass, higgs, casas, and epsilon datasets
is more than 259200 (sec) (i.e., three days).

4.6 Summary of the Experimental Results

In this section, we summarize the experimental results of
both PLAME and existing methods. Even though PLAME
may not achieve the best performance in terms of accuracy
(cf. Table 6) and training time (cf. Figure 8), PLAME can
achieve the competitive performance in these two aspects.
Moreover, existing methods can fail at least one of these
three conditions, (1) low classification error, (2) low memory
space, and (3) low training time.

• High classification error for LIBLINEAR and
PmSVM (cf. Table 6)

• High memory space (in order to achieve better accu-
racy (cf. Figure 7)) and high classification error (cf.
Table 6) for feature approximation methods

• High training time for LIBSVM (cf. Figure 8)

Unlike the existing methods, PLAME can achieve the
best trade-off between the accuracy (classification error),
memory space, and training time in order to simultaneously
fulfill these three conditions.

5 RELATED WORK

Kernel-based SVM classification has been widely used in
many application domains, including human activity recog-
nition/detection [37], [41], [51], [52], [63], [79], pedestrian
detection [4], [5], geoscience and remote sensing [8], [21]. For
these types of applications, they normally adopt the additive
kernels [59], e.g., χ2 kernel, to improve the accuracy results.
However, compared with training linear SVM models, it is
time-consuming to train SVM models using additive kernel
functions [54], [60], [64]. As such, many efficient techniques
have been developed in the literature which can be divided
into two camps, (1) feature approximation and (2) function
approximation.

In the first camp, some researchers [33], [35], [47], [59],
[60], [64] observe that there are many efficient linear SVM
solvers, e.g., LIBLINEAR [23], Pegasos [56], and SVM-Perf
[31], for training linear SVM models. As such, they propose
to construct the high-dimensional feature maps such that the

inner product between any two feature maps can capture
the kernel function value (cf. Equation 1). However, all of
these studies need to generate the new feature maps with
much higher dimensions in order to achieve better accuracy
which can consume huge memory resources, especially
for large-scale datasets (e.g., GB-scale). Furthermore, these
methods cannot provide competitive accuracy (cf. Table 6)
compared with our method PLAME and the kernel SVM
solver LIBSVM. In addition, given the absolute error ε,
most of these studies, e.g., [47], [64], cannot provide the
theoretical guarantee between the exact kernel value and the
inner product between the feature maps. Moreover, there are
also many other types of feature approximation methods [3],
[9], [14], [34], [38], [48], [50], [53], [74], [76]. However, these
methods focus on other types of kernel functions, e.g.,
Gaussian and polynomial kernels, which cannot support
additive kernels.

In the second camp, which is mostly related to our work,
some researchers propose using some simple functions to
approximate the complicated kernel aggregation function
F (x) (cf. Equation 6). Both Wu et al. [69], [71] and Yang
et al. [75] propose using a single quadratic function to
approximate the one-dimensional kernel aggregation func-
tion f(x(`)) (cf. Equation 9). Theoretically, f(x(`)) may not
be in the shape of quadratic function (i.e., no theoretical
guarantee between this approximation and the exact value
of f(x(`))). As such, this approach [69], [71], [75] can achieve
inferior accuracy results compared with our method (cf. the
PmSVM method in Table 6). In addition, Maji et al. [45]
propose to utilize piecewise polynomial function to ap-
proximate f(x(`)). However, this approach cannot provide
the approximation guarantee (like [69], [71], [75]) and only
focus on the testing phase, which cannot be extended to
support the time-consuming training phase. Recently, Chan
et al. [10], [12] propose to combine the hierarchical indexing
framework [24], [25] with the linear function [12] and the
quadratic function [10] to approximate the kernel aggrega-
tion function F (x) with different types of kernel functions.
Although these studies [10], [12] can provide the theoretical
guarantee between the approximate result and the exact
value F (x), these methods only focus on the testing phase,
do not consider additive kernel functions, and suffer from
high worst-case time complexities for evaluating F (x) (e.g.,
O(nd) time for [12] and O(nd2) time for [10]), which are
far worse than our method (O(Pd) time, where P << n).
Furthermore, Baek et al. [4], [5] and Chan et al. [11] propose
to precompute some f(x(`)) values for each dimension in
advance, which can further improve the efficiency for the
testing phase in exact SVM. However, like [10], [12], [45],
both Baek et al. [4], [5] and Chan et al. [11] cannot support
the training phase. Even though some research studies in
approximation theory [15], [62] also use some simple func-
tions to approximate more complicated functions, none of
these approaches, e.g., interpolation or curve fitting, can be
easily extended to support efficient training for SVM models
with theoretical guarantee (cf. Lemma 4), to the best of our
knowledge.

Compared with the above two camps of research work,
we can provide the approximation KPL(xi,x) for K(xi,x)
with bounded error (cf. Lemma 4), slight time overhead (cf.
Theorem 1), and slight memory overhead (cf. Lemma 3) for

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 11

training SVM models using PLAME.
In both database and machine learning communities,

there are also many other studies [2], [20], [29], [32], [34],
[39], [77] for speeding up the training and testing phases
of SVM, which are not based on feature approximation
and function approximation methods, e.g., support vector
reduction [32], [39] and indexing [77]. However, all of these
studies mainly focus on Gaussian, polynomial, and sigmoid
kernels, which cannot be easily extended to additive kernels.
Recently, many research studies also exploit the opportuni-
ties for adopting the parallel/distributed computation, e.g.,
[30], [68], and the graphics processing unit (GPU), e.g., [65],
[66], to boost the efficiency for the training phase of SVM,
which can consume more computational resources (e.g., 32
machines are used in [30]). Due to space limitations, we
mainly focus on the single machine setting with CPU in this
work (like [13]) and leave the combination of our method
PLAME with these methods in the future work.

6 CONCLUSION

In this paper, we propose the new similarity measure, called
PLAME, which can be used to approximate the additive
kernel functions in order to efficiently and effectively train
the additive kernel SVM model. We further show that (1)
the approximation error between PLAME and the additive
kernel function can be theoretically close and (2) training
SVM with PLAME is slightly slower than training lin-
ear SVM (e.g., LIBLINEAR [23]) without incurring large
additional space. Experimental studies on twelve datasets
demonstrate that our method can retain the high accuracy,
can achieve the small response time, and can incur nearly
no space overhead compared with two types of state-
of-the-art methods, including feature-approximation-based
and function-approximation-based methods, and two types
of commonly-used software, including LIBSVM [13] and
LIBLINEAR [23].

In the future, we will further apply PLAME to boost the
efficiency of other statistical and machine learning models,
e.g., kernel k-means clustering [16], kernel regression [55],
and kernel density estimation [10]–[12]. In addition, we will
investigate how to apply the high-order polynomial func-
tion to accurately approximate the additive kernel functions
in order to further boost both the efficiency and accuracy
performances. Moreover, we will study the efficiency is-
sues for other types of commonly used kernel functions,
e.g., Gaussian kernel [55], isolation kernel [58], [72], graph
kernels [61], and string kernels [42], in different machine
learning models. Furthermore, like the previous studies [30],
[65], [66], [68], we will also exploit the opportunities for
using parallel/distributed computation and GPU to fur-
ther improve the efficiency for training SVM models with
PLAME.

7 APPENDIX
7.1 Proof of Lemma 5
Proof. Observe from Figure 9 that L(x

(`)
i , x(`)) becomes

larger once u is larger. Therefore, the objective function of
the optimization problem (G) is monotonic increasing with
respect to u. In addition, the search space is also larger if u
is larger, based on the first constraint ` ≤ x

(`)
i ≤ u of (G).

Since (G) is the maximization problem, we can conclude that
E(l, u1) ≤ E(l, u2) if u1 ≤ u2.

function value

𝑥𝑖
(ℓ)

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

k(𝑥𝑖
(ℓ)

,𝑥(ℓ)) =
2𝑥𝑖

(ℓ)
𝑥(ℓ)

𝑥𝑖
(ℓ)

+ 𝑥(ℓ)

l

u

Fig. 9: L(x
(`)
i , x(`)) is monotonic increasing with respect to u.

7.2 Proof of Theorem 2
Proof. We first let IOCPM and IOPT be two sets of inter-
vals of the methods OCPM and optimal solution, respec-
tively. Then, we denote IOCPM = {IOCPM

1 , IOCPM
2 , ...} and

IOPT = {IOPT
1 , IOPT

2 , ...}. After that, we also denote IOCPM
k .l

(IOPT
k .l) and IOCPM

k .u (IOPT
k .u) as the start position and the

end position of the interval for OCPM (OPT), respectively.
Without loss of generality, we also let the kth interval be just
before the (k + 1)th interval, i.e.,

IOCPM
k .u = IOCPM

k+1 .l and IOPT
k .u = IOPT

k+1.l

Since every method must cover the whole region, we
have: IOCPM

1 .l = IOPT
1 .l = L(`). Based on Lemma 5, we

know that E(l, u) is the monotonic increasing function with
respect to u. Therefore, the exponential search [6] can find
the largest u such that it can still fulfill the absolute error
condition (i.e., ε). As such, we have:

IOCPM
1 .u ≥ IOPT

1 .u

Assume it is also true for the kth interval that:

IOCPM
k .u ≥ IOPT

k .u

Therefore, we have:

IOCPM
k+1 .l ≥ IOPT

k+1.l

Based on the correctness property of optimal solution,
we also know that:

E(IOPT
k+1.l, I

OPT
k+1.u) ≤ ε

In Figure 10, since the red interval [IOCPM
k+1 .l, IOPT

k+1.u] is the
subset of IOPT

k , we have:

E(IOCPM
k+1 .l, IOPT

k+1.u) ≤ E(IOPT
k+1.l, I

OPT
k+1.u) ≤ ε

We omit the proof of the first inequality, as it uses the
same concept of Lemma 5.

Recall that the exponential search [6] can find the
largest u such that it can achieve the absolute error
guarantee (ε). Therefore, based on the above inequality
E(IOCPM

k+1 .l, IOPT
k+1.u) ≤ ε, we can conclude:

IOCPM
k+1 .u ≥ IOPT

k+1.u

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 12

𝐼𝑘+1
OPT

𝐼𝑘+1
OCPM

𝐼𝑘+1
OPT. 𝑙 𝐼𝑘+1

OPT. 𝑢

𝐼𝑘+1
OCPM. 𝑙 𝐼𝑘+1

OCPM. 𝑢

Fig. 10: The (k + 1)th intervals (black) for both OCPM and
OPT methods.

By induction, we show that IOCPM
v .u ≥ IOPT

v .u for each
vth interval in the sets IOCPM and IOPT which also means
that OCPM needs smaller (or at most equal) number of
intervals compared with OPT. However, OPT is the opti-
mal solution which must produce the smallest number of
intervals. As such, OCPM produces the minimum number
of intervals (i.e., achieves optimal solution).

7.3 Proof of Lemma 6
To achieve the result in Lemma 6, we need to prove two
properties which are: (1) there exists the local maximum
solution for optimization problem (G) and (2) this local
maximum solution is the global maximum solution.

In the optimization problem (G), we notice that the
constraint region (i.e., l ≤ x

(`)
i ≤ u and L ≤ x(`) ≤ U)

is bounded and closed, i.e., compact space [57]. As such, by
Weierstrass theorem (Theorem 2.2 in [26]), we can show the
property (1).

In order to show the property (2), we find the Hessian
matrix of L(x

(`)
i , x(`)), i.e.,

H =

 ∂2L

∂x
(`)
i

2
∂2L

∂x
(`)
i ∂x(`)

∂2L

∂x
(`)
i ∂x(`)

∂2L
∂x(`)2


If x(`)i and x(`) fulfill the constraints of the optimization

problem (G), we can achieve the following expressions, by
some algebraic and calculus operations:

∂2L

∂x
(`)
i

2 ≤ 0 and |H| ≥ 0

As such, the Hessian matrix H is negative definite ma-
trix. Therefore, L(x

(`)
i , x(`)) is the concave function once x(`)i

and x(`) are within the constraint region of the optimization
problem (G). Hence, we prove the property (2).

7.4 Additional Experiments for Other Kernels
In this section, we further conduct additional experiments
for testing the accuracy and efficiency for all methods using
other additive kernel functions, which are (1) JS kernel and
(2) Hellinger kernel. Due to space limitations, we omit the
results for adopting the intersection kernel and only test the
performance of these methods using two datasets, which are
cod-rna (with a small size) and casas (with a large size), in
Table 4.

Accuracy of all methods using other additive kernels: In the
first experiment, we follow the default settings in Section 4.4
(e.g., using x7 dimensionality for all feature approximation
methods and choosing ε = 0.005 for PLAME) to test the
accuracy of all methods (cf. Table 7). Like Section 4.4, our
method, PLAME, achieves the top-2 accuracy results no
matter which kernel functions we adopt. Although LIBSVM
achieves the best performance in the small-scale dataset, i.e.,
cod-rna, this method cannot train the SVM model within
three days for the large-scale dataset, i.e., casas. In addition,
all feature approximation methods, namely VLFeat, PL, NN,
LD, and ENL, need to consume more than 16GB space
for training SVM models in the casas dataset. Therefore,
PLAME is the only method that (1) is scalable to large-
scale datasets, (2) does not incur huge space overhead, and
(3) retains high accuracy results. As a remark, since the
Chebyshev method can only support the χ2 kernel function,
we omit the results of this method in Table 7.
TABLE 7: Accuracy of all methods with different kernel
functions (n.a.: The running time of this method takes more
than 3 days or the memory consumption of this method is
more than 16GB.), where the top-2 accuracy values are in
bold type for each dataset.

Method JS kernel Hellinger kernel
cod-rna casas cod-rna casas

LIBSVM 0.956 n.a. 0.948 n.a.
LIBLINEAR 0.623 0.71 0.623 0.71

VLFeat 0.783 n.a. 0.774 n.a.
PL 0.714 n.a. 0.714 n.a.
NN 0.611 n.a. 0.657 n.a.
LD 0.728 n.a. 0.712 n.a.

ENL 0.441 n.a. 0.437 n.a.
PmSVM 0.675 0.718 0.692 0.707
PLAME 0.918 0.773 0.921 0.767

Efficiency of all methods using other additive kernels: In the
second experiment, we proceed to test the efficiency of all
methods for training SVM models in the cod-rna and casas
datasets using the JS kernel and Hellinger kernel. Figure 11
shows the results of all methods. Like Section 4.5, since the
feature approximation methods and function approximation
methods mainly adopt the linear SVM solver and adopt the
slightly modified linear SVM solver, respectively, to train
SVM models, all these methods achieve similar response
time for using the small-scale dataset, i.e., cod-rna. In addi-
tion, all feature approximation methods and LIBSVM need
to consume more than 16GB space and take more than 3
days, respectively, for training SVM models in the large-
scale dataset. As such, PLAME is the only method that (1)
takes small training time and (2) does not consume huge
memory space.

ACKNOWLEDGEMENT
This work was supported by the NSFC grant 62202401,
the Science and Technology Development Fund Macau
SAR 0015/2019/AKP, 0031/2022/A, SKL-IOTSC-2021-2023,
the Research Grant of University of Macau MYRG2022-
00252-FST, Wuyi University Hong Kong and Macau joint
Research Fund 2021WGALH14, the University of Hong
Kong (Projects 104005858 and 10400599), and the Guang-
dong–Hong Kong-Macau Joint Laboratory Program 2020
(Project No: 2020B1212030009).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 13

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

VL
Fe

at PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

Ti
m

e
(s

ec
)

Methods

 0

 5000

 10000

 15000

 20000

 25000

 30000

VL
Fe

at PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

n.a. n.a.

Ti
m

e
(s

ec
)

Methods

 0

 200

 400

 600

 800

 1000

 1200

 1400

VL
Fe

at PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

Ti
m

e
(s

ec
)

Methods

 0

 5000

 10000

 15000

 20000

 25000

 30000

VL
Fe

at PL NN LD EN
L

Pm
SV

M

PL
AM

E

LI
BL

IN
EA

R

LI
BS

VM

n.a. n.a.

Ti
m

e
(s

ec
)

Methods

(a) cod-rna (JS kernel) (b) casas (JS kernel) (c) cod-rna (Hellinger kernel) (d) casas (Hellinger kernel)

Fig. 11: Response time (sec) for all methods in the training phase with other additive kernels, fixing the dimensionality of
feature approximation methods as x7 of the original dimensionality.

REFERENCES

[1] UCI machine learning repository. http://archive.ics.uci.edu/ml/
index.php.

[2] F. Angiulli and A. Astorino. Scaling up support vector machines
using nearest neighbor condensation. IEEE Trans. Neural Networks,
21(2):351–357, 2010.

[3] H. Avron, V. Sindhwani, J. Yang, and M. W. Mahoney. Quasi-
monte carlo feature maps for shift-invariant kernels. J. Mach. Learn.
Res., 17:120:1–120:38, 2016.

[4] J. Baek, J. Hyun, and E. Kim. A pedestrian detection system ac-
celerated by kernelized proposals. IEEE Transactions on Intelligent
Transportation Systems, pages 1–13, 2019.

[5] J. Baek, J. Kim, and E. Kim. Fast and efficient pedestrian detection
via the cascade implementation of an additive kernel support
vector machine. IEEE Trans. Intelligent Transportation Systems,
18(4):902–916, 2017.

[6] J. L. Bentley and A. C. Yao. An almost optimal algorithm for
unbounded searching. Inf. Process. Lett., 5(3):82–87, 1976.

[7] M. Boroumand and J. J. Fridrich. Applications of explicit non-
linear feature maps in steganalysis. IEEE Trans. Inf. Forensics Secur.,
13(4):823–833, 2018.

[8] Ü. Budak, U. Halici, A. Sengür, M. Karabatak, and Y. Xiao. Efficient
airport detection using line segment detector and fisher vector
representation. IEEE Geosci. Remote Sensing Lett., 13(8):1079–1083,
2016.

[9] B. Bullins, C. Zhang, and Y. Zhang. Not-so-random features. In
ICLR, 2018.

[10] T. N. Chan, R. Cheng, and M. L. Yiu. QUAD: Quadratic-bound-
based kernel density visualization. In SIGMOD, pages 35–50, 2020.

[11] T. N. Chan, L. H. U, R. Cheng, M. L. Yiu, and S. Mittal. Efficient
algorithms for kernel aggregation queries. IEEE Transactions on
Knowledge and Data Engineering, pages 1–1, 2020.

[12] T. N. Chan, M. L. Yiu, and L. H. U. KARL: Fast kernel aggregation
queries. In ICDE, pages 542–553, 2019.

[13] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.
tw/∼cjlin/libsvm.

[14] M. Chen and K. Lin. Efficient kernel approximation for large-scale
support vector machine classification. In SDM, pages 211–222,
2011.

[15] E. Cheney and W. Light. A Course in Approximation Theory.
Mathematics Series. Brooks/Cole Publishing Company, 2000.

[16] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain. Approximate kernel
k-means: solution to large scale kernel clustering. In SIGKDD,
pages 895–903, 2011.

[17] O. Chum. Low dimensional explicit feature maps. In ICCV, pages
4077–4085, 2015.

[18] O. Chum. Optimizing explicit feature maps on intervals. Image
Vis. Comput., 66:36–47, 2017.

[19] D. J. Cook. Learning setting-generalized activity models for smart
spaces. IEEE Intelligent Systems, 27(1):32–38, 2012.

[20] M. Cossalter, R. Yan, and L. Zheng. Adaptive kernel approxima-
tion for large-scale non-linear SVM prediction. In ICML, pages
409–416, 2011.

[21] B. Demir and L. Bruzzone. Histogram-based attribute profiles
for classification of very high resolution remote sensing images.
IEEE Transactions on Geoscience and Remote Sensing, 54(4):2096–
2107, April 2016.

[22] D. K. Duvenaud, H. Nickisch, and C. E. Rasmussen. Additive
gaussian processes. In NIPS, pages 226–234, 2011.

[23] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874, 2008.

[24] E. Gan and P. Bailis. Scalable kernel density classification via
threshold-based pruning. In ACM SIGMOD, pages 945–959, 2017.

[25] A. G. Gray and A. W. Moore. Nonparametric density estimation:
Toward computational tractability. In SDM, pages 203–211, 2003.

[26] O. Güler. Foundations of Optimization. Graduate Texts in Mathe-
matics. Springer New York, 2010.

[27] Y. Guo, Y. Li, and Z. Shao. DSRF: A flexible trajectory descriptor
for articulated human action recognition. Pattern Recognit., 76:137–
148, 2018.

[28] C. Hsieh, K. Chang, C. Lin, S. S. Keerthi, and S. Sundararajan.
A dual coordinate descent method for large-scale linear SVM. In
ICML, pages 408–415, 2008.

[29] C. Hsieh, S. Si, and I. S. Dhillon. Fast prediction for large-scale
kernel machines. In NIPS, pages 3689–3697, 2014.

[30] C. Hsieh, S. Si, and I. S. Dhillon. Communication-efficient dis-
tributed block minimization for nonlinear kernel machines. In
SIGKDD, pages 245–254, 2017.

[31] T. Joachims. Training linear svms in linear time. In SIGKDD, pages
217–226, 2006.

[32] H. G. Jung and G. Kim. Support vector number reduction: Survey
and experimental evaluations. IEEE Trans. Intelligent Transportation
Systems, 15(2):463–476, 2014.

[33] S. Kim and S. Choi. Binary embedding with additive homoge-
neous kernels. In AAAI, pages 2094–2100, 2017.

[34] Q. V. Le, T. Sarlós, and A. J. Smola. Fastfood - computing hilbert
space expansions in loglinear time. In ICML, pages 244–252, 2013.

[35] F. Li, G. Lebanon, and C. Sminchisescu. Chebyshev approxima-
tions to the histogram χ2 kernel. In CVPR, pages 2424–2431, 2012.

[36] W. Li, M. Coats, J. Zhang, and S. Mckenna. Discriminating dys-
plasia: Optical tomographic texture analysis of colorectal polyps.
Medical image analysis, 26:57–69, 09 2015.

[37] W. Li and N. Vasconcelos. Complex activity recognition via
attribute dynamics. International Journal of Computer Vision,
122(2):334–370, 2017.

[38] Y. Li, K. Zhang, J. Wang, and S. Kumar. Learning adaptive random
features. In AAAI, pages 4229–4236, 2019.

[39] X. Liang. An effective method of pruning support vector machine
classifiers. IEEE Trans. Neural Networks, 21(1):26–38, 2010.

[40] B. Liu, H. Cai, Z. Ju, and H. Liu. RGB-D sensing based human
action and interaction analysis: A survey. Pattern Recognit., 94:1–
12, 2019.

[41] M. Liu, H. Liu, and C. Chen. 3d action recognition using multiscale
energy-based global ternary image. IEEE Trans. Circuits Syst. Video
Techn., 28(8):1824–1838, 2018.

[42] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. J.
C. H. Watkins. Text classification using string kernels. J. Mach.
Learn. Res., 2:419–444, 2002.

[43] S. Maji and A. C. Berg. Max-margin additive classifiers for
detection. In ICCV, pages 40–47, 2009.

[44] S. Maji, A. C. Berg, and J. Malik. Classification using intersection
kernel support vector machines is efficient. In CVPR, 2008.

[45] S. Maji, A. C. Berg, and J. Malik. Efficient classification for additive
kernel svms. IEEE Trans. Pattern Anal. Mach. Intell., 35(1):66–77,
2013.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 14

[46] M. Mutny and A. Krause. Efficient high dimensional bayesian
optimization with additivity and quadrature fourier features. In
NeurIPS, pages 9019–9030, 2018.

[47] O. Pele, B. Taskar, A. Globerson, and M. Werman. The pairwise
piecewise-linear embedding for efficient non-linear classification.
In ICML, pages 205–213, 2013.

[48] J. Pennington, F. X. Yu, and S. Kumar. Spherical random features
for polynomial kernels. In NIPS, pages 1846–1854, 2015.

[49] F. Perronnin, J. Sánchez, and Y. Liu. Large-scale image catego-
rization with explicit data embedding. In CVPR, pages 2297–2304,
2010.

[50] N. Pham and R. Pagh. Fast and scalable polynomial kernels via
explicit feature maps. In SIGKDD, pages 239–247, 2013.

[51] J. Qi, Z. Wang, X. Lin, and C. Li. Learning complex spatio-temporal
configurations of body joints for online activity recognition. IEEE
Trans. Human-Machine Systems, 48(6):637–647, 2018.

[52] H. Qian, S. J. Pan, and C. Miao. Sensor-based activity recognition
via learning from distributions. In AAAI, pages 6262–6269, 2018.

[53] A. Rahimi and B. Recht. Random features for large-scale kernel
machines. In NIPS, pages 1177–1184, 2007.

[54] V. Risojevic and Z. Babic. Unsupervised quaternion feature learn-
ing for remote sensing image classification. IEEE J Sel. Topics in
Appl. Earth Observ. and Remote Sensing, 9(4):1521–1531, 2016.

[55] B. Schölkopf and A. J. Smola. Learning with Kernels: support
vector machines, regularization, optimization, and beyond. Adaptive
computation and machine learning series. MIT Press, 2002.

[56] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal
estimated sub-gradient solver for SVM. In ICML, pages 807–814,
2007.

[57] B. Thomson, J. Bruckner, and A. Bruckner. Elementary Real Analysis.
Prentice-Hall, 2008.

[58] K. M. Ting, Y. Zhu, and Z. Zhou. Isolation kernel and its effect on
SVM. In SIGKDD, pages 2329–2337, 2018.

[59] A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit
feature maps. IEEE Trans. Pattern Anal. Mach. Intell., 34(3):480–492,
2012.

[60] A. Vedaldi and A. Zisserman. Sparse kernel approximations for
efficient classification and detection. In CVPR, pages 2320–2327,
2012.

[61] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt. Graph kernels. J. Mach. Learn. Res., 11:1201–1242, 2010.

[62] I. A. S. Vladislav Kirillovich Dziadyk. Theory of Uniform Approxi-
mation of Functions by Polynomials. Walter De Gruyter, 2008.

[63] L. Wang, X. Zhao, Y. Si, L. Cao, and Y. Liu. Context-associative
hierarchical memory model for human activity recognition and
prediction. IEEE Trans. Multimedia, 19(3):646–659, 2017.

[64] Z. Wang, X. Yuan, Q. Liu, and S. Yan. Additive nearest neighbor
feature maps. In ICCV, pages 2866–2874, 2015.

[65] Z. Wen, J. Shi, B. He, J. Chen, and Y. Chen. Efficient multi-
class probabilistic svms on gpus. IEEE Trans. Knowl. Data Eng.,
31(9):1693–1706, 2019.

[66] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen. Thundersvm: A fast SVM
library on gpus and cpus. J. Mach. Learn. Res., 19:21:1–21:5, 2018.

[67] S. J. Wright. Coordinate descent algorithms. Math. Program.,
151(1):3–34, June 2015.

[68] H. Wu, X. Huang, Q. Luo, and Z. Yang. Ppd: A scalable and
efficient parallel primal-dual coordinate descent algorithm. IEEE
Transactions on Knowledge and Data Engineering, pages 1–1, 2020.

[69] J. Wu. Power mean SVM for large scale visual classification. In
CVPR, pages 2344–2351, 2012.

[70] J. Wu, W. Tan, and J. M. Rehg. Efficient and effective visual
codebook generation using additive kernels. Journal of Machine
Learning Research, 12:3097–3118, 2011.

[71] J. Wu and H. Yang. Linear regression-based efficient SVM learning
for large-scale classification. IEEE Trans. Neural Netw. Learning
Syst., 26(10):2357–2369, 2015.

[72] B. Xu, K. M. Ting, and Z. Zhou. Isolation set-kernel and its
application to multi-instance learning. In SIGKDD, pages 941–949,
2019.

[73] J. Xu, J. Han, F. Nie, and X. Li. Multi-view scaling support
vector machines for classification and feature selection. IEEE Trans.
Knowl. Data Eng., 32(7):1419–1430, 2020.

[74] Y. Xu, C. Miao, Y. Liu, H. Song, Y. Hu, and H. Min. Kernel-target
alignment based non-linear metric learning. Neurocomputing,
411:54–66, 2020.

[75] H. Yang and J. Wu. Practical large scale classification with additive
kernels. In ACML, pages 523–538, 2012.

[76] F. X. Yu, A. T. Suresh, K. M. Choromanski, D. N. Holtmann-Rice,
and S. Kumar. Orthogonal random features. In NIPS, pages 1975–
1983, 2016.

[77] H. Yu, I. Ko, Y. Kim, S. Hwang, and W. Han. Exact indexing for
support vector machines. In SIGMOD, pages 709–720, 2011.

[78] Z. Yu, X. Jiang, F. Zhou, J. Qin, D. Ni, S. Chen, B. Lei, and
T. Wang. Melanoma recognition in dermoscopy images via aggre-
gated deep convolutional features. IEEE Trans. Biomed. Engineering,
66(4):1006–1016, 2019.

[79] H. Zhang and L. E. Parker. Bio-inspired predictive orientation
decomposition of skeleton trajectories for real-time human activity
prediction. In ICRA, pages 3053–3060, May 2015.

[80] J. Zhao, L. Wang, R. S. Cabral, and F. D. la Torre. Feature and
region selection for visual learning. IEEE Trans. Image Process.,
25(3):1084–1094, 2016.

Tsz Nam Chan received the bachelor’s degree
in electronic and information engineering and
the PhD degree in computer science from the
Hong Kong Polytechnic University in 2014 and
2019, respectively. He worked as the postdoc-
toral researcher in The University of Hong Kong
from Sep 2018 to Aug 2020. He is currently a
research assistant professor in the Hong Kong
Baptist University. His research interests include
spatiotemporal data management, large-scale
data visualization, and kernel methods for ma-

chine learning. He is a member of IEEE.

Zhe Li is currently a senior R&D engineer in the
Database Department of Alibaba Cloud. Specif-
ically, he focuses on the storage layer of Ana-
lyticDB, a commercial cloud-oriented data ware-
house. He received his Ph.D. degree in com-
puter science from The Hong Kong Polytechnic
University in 2022, supervised by Dr. Ken Yiu.
He used to be a member of PolyU Database
Research Group. Before that, he obtained his
MSc degree in computer science from The Hong
Kong University of Science and Technology and

BEng degree in computer science from Sun Yat-sen University.

Leong Hou U completed his B.Sc. in Computer
Science and Information Engineering at Taiwan
Chi Nan University, his M.Sc. in E-commerce
at University of Macau, and his Ph.D. in Com-
puter Science at University of Hong Kong. He
is now an Associate Professor at University of
Macau. His research interests include spatial
and spatio-temporal databases, advanced query
processing, crowdsourced query processing, in-
formation retrieval, data mining and optimization
problems.

Reynold Cheng is a professor of the Depart-
ment of Computer Science in the University of
Hong Kong (HKU). He obtained his PhD from
Department of Computer Science of Purdue Uni-
versity in 2005. Dr. Cheng was granted an Out-
standing Young Researcher Award 2011-12 by
HKU.

