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ABSTRACT
Geospatial analytics is an important field in many communities,

including crime science, transportation science, epidemiology, ecol-

ogy, and urban planning. However, with the rapid growth of big

geospatial data, most of the commonly used geospatial analytic tools

are not efficient (or even feasible) to support large-scale datasets.

As such, domain experts have raised the concerns about the ineffi-

ciency issues for using these tools. In this tutorial, we aim to arouse

the attention of database researchers for this important, emerg-

ing, database-related, and interdisciplinary topic, which consists of

four parts. In the first part, we will discuss different problems and

highlight the challenges for two types of geospatial analytic tools,

which are (1) hotspot detection and (2) correlation analysis. In the

second and third parts, we will specifically discuss two geospatial

analytic tools, namely kernel density visualization (the representa-

tive hotspot detection method) and K-function (the representative

correlation analysis method), respectively, and their variants. In

the fourth part, we will highlight the future opportunities for this

topic.

CCS CONCEPTS
• Theory of computation → Computational geometry; • In-
formation systems → Geographic information systems; •
Human-centered computing→ Heat maps.
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1 INTRODUCTION
Geospatial analytics is an important field in many disciplines. Some

representative examples include criminology, transportation sci-

ence, epidemiology, ecology, and urban planning. Criminologists

and transportation scientists [24, 57, 65, 69, 82–84, 95, 97, 102] need

to discover crime and traffic accident hotspots, respectively, in

different geographical regions. Epidemiologists [39, 41, 42, 46, 54,

55, 58, 80] need to detect disease outbreaks, identify transmission

patterns of different diseases, and analyze disease factors. Ecolo-

gists [54, 80, 87] need to understand the distribution of environmen-

tal incidents (e.g., air pollution). Urban planners [45, 89, 98] need to

analyze human mobility in different cities. As such, many off-the-

shelf software packages, e.g., QGIS [11], ArcGIS [1], CrimeStat [5],

spatstat [14, 19], spNetwork [15], and SANET [13, 73], have been

developed to support geospatial analytics.

However, in the big data era, many large-scale location datasets

can be collected and analyzed nowadays. For example, the Chicago

crime dataset [3] and New York taxi dataset [9] contain 7.68 mil-

lion and 165 million data points, respectively. Worse yet, many

commonly used tools in geospatial analytics (e.g., kernel density

visualization (KDV) [32, 57], K-function [33, 74, 106], and spatial

clustering [18, 88]) suffer from high time complexity (e.g., O(n2)
time for computing a single K-function, where n denotes the num-

ber of data points). Based on the above reasons, these tools cannot

be efficiently (or even feasibly) supported by off-the-shelf software

packages, which have been also complained by many domain ex-

perts [50, 55, 106].

As such, efficient algorithm and software development for these

geospatial analytic tools is an important, emerging, database-
related, and interdisciplinary topic. Although many tutorials

that are related to spatial/spatiotemporal databases and data vi-

sualization have been given in the database community [38, 43,

63, 70, 72, 85, 90, 103, 113], none of these tutorials has focused on

improving the efficiency for these geospatial analytic tools. There-

fore, we propose this tutorial in order to arouse the attention of

database researchers and practitioners for understanding different

problems, challenges, and opportunities of this important topic.

In particular, we will also discuss the state-of-the-art solutions

for two commonly used tools, namely kernel density visualization

(KDV) and K-function, in order to provide insights for tackling

these geospatial analytic problems.

https://doi.org/10.1145/3555041.3589401
https://doi.org/10.1145/3555041.3589401
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Target audience: In this tutorial, we mainly target the SIGMOD

attendees who are interested in conducting research for spa-

tial/spatiotemporal databases and data analytics or interested in

incorporating latest technologies into software. The audience needs

to understand some basic database concepts, e.g., indexing. How-

ever, this tutorial is self-contained, which does not require prior

knowledge of geographic information systems and data visualiza-

tion.

Related work from authors: We have extensively conducted

research on improving the efficiency of different geospatial an-

alytic tools in recent years, including kernel density visualiza-

tion (KDV) [25, 26, 31, 32, 34], network kernel density visu-

alization (NKDV) [30], spatiotemporal kernel density visualiza-

tion (STKDV) [27], and network K-function [33]. Moreover, we

have developed the python software packages, LIBKDV [29] and

PyNKDV [35], and the web-based demonstration system, KDV-

Explorer [28]. Furthermore, two online hotspot visualization sys-

tems (based on our research studies), namely Hong Kong COVID-19

hotspot map [6] and Macau COVID-19 hotspot map [8], have been

deployed for monitoring COVID-19 hotspots in Hong Kong and

Macau, respectively.

2 TUTORIAL OUTLINE
The tutorial lasts for 1.5 hours, which consists of four parts. In the

first part (30 minutes), we will have a comprehensive overview of

different geospatial analytic tools, which are supported by famous

software packages (e.g., ArcGIS and QGIS). In the second part (25
minutes) and third part (15 minutes), we will review the state-

of-the-art solutions for two commonly used tools, namely kernel

density visualization (KDV) andK-function, respectively. Moreover,

we will also discuss other variants of KDV and K-function in these

two parts. In the fourth part (20 minutes), we will discuss the

future opportunities of this topic.

2.1 Overview of Geospatial Analytics
In the first part of this tutorial, we will focus on two application

types of geospatial analytics, namely hotspot detection and correla-

tion analysis, which are widely used by domain experts to analyze

their location datasets. For each application type, we will discuss all

famous tools in Table 1 by (1) illustrating the backgrounds of them

(e.g., formulating them as spatial query processing problems), (2)

providing a hands-on demonstration, using QGIS/ArcGIS, for show-

ing how these tools can be used to analyze patterns in the Hong

Kong COVID-19 dataset [7], (3) comparing the pros and cons for

these tools, and (4) highlighting the challenges (i.e., the inefficiency

issues) for using these tools.

Table 1: Different types of geospatial analytic tools.
Application type Geospatial analytic tool References

Hotspot detection

Kernel density visualization (KDV) [44, 83, 95]

Inverse distance weighting (IDW) [16, 61, 104]

Kriging [92, 101, 112]

Correlation analysis

K -function [22, 64, 108]

Moran’s I [37, 60, 93]

Getis-Ord General G [17, 59, 62]

As an example, we provide the backgrounds of KDV (one of the

hotspot detection methods) and K-function (one of the correlation

analysis methods) in this section.

Background of KDV: To discover hotspots in a location dataset,

domain experts need to generate a KDV-based heatmap. Figure 1

shows an example for discovering hotspots in the Hong Kong

COVID-19 dataset. Note that the red region is the COVID-19 hotspot

in Hong Kong.

(a) Hong Kong COVID-19 cases (b) Heatmap
Figure 1: A heatmap (based on KDV) for the Hong Kong
COVID-19 dataset (yellow points in (a)), where we use the
red color (in (b)) to denote the high-density (hotspot) region.

In Definition 1, we formally define the problem for generating

KDV (cf. Figure 1).

Definition 1. (KDV [32]) Given a location dataset P =

{p1, p2, ..., pn } with n spatial data points and a geographical region
with X × Y pixels, we need to color each pixel q based on the kernel
density value FP (q) (cf. Equation 1).

FP (q) =
∑
p∈P

w · K(q, p) (1)

wherew and K(q, p) denote the normalization constant and kernel
function, respectively. Some representative kernel functions are shown
in Table 2.

Table 2: Some representative kernel functions, where dist
and b denote the Euclidean distance and the bandwidth pa-
rameter, respectively.

Kernel K(q, p) References

Uniform

{
1

b if dist (q, p) ≤ b
0 otherwise

[99]

Epanechnikov

{
1 − 1

b2
dist (q, p)2 if dist (q, p) ≤ b

0 otherwise

[41, 57]

Quartic

{(
1 − 1

b2
dist (q, p)2

)
2

if dist (q, p) ≤ b

0 otherwise

[23, 68]

Gaussian exp

(
− 1

b2
dist (q, p)2

)
[69, 95]

As a remark, this tutorial will also cover the backgrounds of

other tools in hotspot detection (i.e., IDW and Kriging in Table 1).

Background of K-function: Although many hotspot detection

methods (e.g., KDV) can identify hotspots in a location dataset, these

approaches cannot determine the meaningfulness/significance of

these hotspots. For example, we can obtain some “hotspot regions”

in a randomly generated location dataset, which are not meaningful.

To tackle this issue, domain experts adopt the correlation analysis

(cf. Table 1) to analyzewhether a location dataset exhibits the cluster

property (or is merely random). Here, we formally define the K-
function (cf. Definition 2) and the K-function plot (cf. Definition 3),

which can be used to analyze the cluster property of a location

dataset.
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Definition 2. (K-function [19]) Given a location dataset P =
{p1, p2, ..., pn } with n spatial data points and the spatial threshold s ,
the K-function for this dataset is:

KP (s) =
∑
pi ∈P

∑
pj ∈P
I(dist(pi , pj ) ≤ s) (2)

where I denotes the indicator function.

I(x) =

{
1 if x is true.
0 otherwise

(3)

Definition 3. (K-function plot [19]) Given a location dataset P ,
L randomly generated datasets (with the same size n), R1, R2,..., RL ,
and D spatial thresholds, s1, s2, ..., sD , generating a K-function plot
involves computing KP (sd ) (cf. Equation 2), L(sd ) (cf. Equation 4),
and U(sd ) (cf. Equation 5) for each spatial threshold sd (1 ≤ d ≤ D).

L(sd ) = min(KR1
(sd ),KR2

(sd ), ...,KRL (sd )) (4)

U(sd ) = max(KR1
(sd ),KR2

(sd ), ...,KRL (sd )) (5)

𝑠

K-function

𝑠1 𝑠2 𝑠3 𝑠𝐷… … … 𝑠𝐷−1

Figure 2: Illustration of a K-function plot, where the black
line, red dotted line, and blue dotted line represent the
curves of KP (sd ), L(sd ), andU(sd ), respectively.

Figure 2 shows an example of a K-function plot. Once the black

curve KP (sd ) is above the blue dotted curveU(sd ), domain experts

reckon that the dataset has meaningful clusters/hotspots for those

thresholds sd . Otherwise, they regard the dataset to be either ran-

dom (i.e., the data points are randomly distributed.) or dispersed

(i.e., the data points tend to be far away from each other.), which

does not have meaningful clusters/hotspots for those thresholds

sd . Note that the parameter sd in the clustered region (cf. Figure 2)

can be further used in geospatial analytic tools of hotspot detection

(e.g., using sd as the bandwidth parameter b of a kernel function

(cf. Table 2) to generate KDV (cf. Definition 1)).

In this tutorial, we will also cover the backgrounds of other tools

in correlation analysis (i.e., Moran’s I and Getis-Ord General G in

Table 1).

2.2 Kernel Density Visualization and Its
Variants

In the second part of this tutorial, we will review state-of-the-

art solutions for generating KDVs. Next, we will illustrate other

variants of KDV, including network kernel density visualization

(NKDV) and spatiotemporal kernel density visualization (STKDV).

After that, we will provide the case studies for adopting our COVID-

19 hotspot maps [6, 8] to analyze COVID-19 hotspots in Hong Kong

and Macau. Lastly, we will provide hands-on experience for using

the fastest python library, LIBKDV [29], to support large-scale

location datasets.

State-of-the-art solutions for generating KDVs:We will review

four types of methods for improving the efficiency of generating

KDVs, including (1) function approximation methods, (2) data sam-

pling methods, (3) computational sharing methods, and (4) paral-

lel/distributed and hardware-based methods. In addition, we will

discuss the advantages and disadvantages of these methods.

Function approximation methods: In the first type of research stud-

ies, researchers [25, 31, 34, 47, 51] first develop the efficient lower

and upper bound functions, LB(q) andUB(q), respectively, for the
kernel density function FP (q) (cf. Equation 1), i.e., LB(q) ≤ FP (q) ≤
UB(q). Then, they incorporate these bound functions into an in-

dex structure (e.g., kd-tree [21] and ball-tree [71]) to progressively

tighten LB(q) andUB(q) (by traversing the index structure) so that

these bound values can achieve the approximation guarantee ε for
computing the approximate kernel density value R(q), where:

UB(q)
LB(q)

≤ 1 + ε → (1 − ε)FP (q) ≤ R(q) ≤ (1 + ε)FP (q) (6)

Data sampling methods: In the second type of research studies, re-

searchers [77–79, 110, 111] propose to obtain the subset S of the

dataset P . Then, they can compute the modified kernel density

function F
(M )

S (q) for this subset S , where:

F
(M )

S (q) =
∑
pi ∈S

wi · K(q, pi ) (7)

They show that F
(M )

S (q) is theoretically close to the original ker-

nel density value FP (q) with a probabilistic guarantee. Since they

can also provide the non-trivial upper bound for the subset size,

computing F
(M )

S (q) can be significantly faster than FP (q).
Computational sharing methods: In the third type of research stud-

ies, researchers [26, 29, 32, 52] exploit some sharing properties in

order to improve the efficiency for computing a single KDV or

multiple KDVs. Some of these research studies (e.g., [26, 29, 32])

can further reduce the time complexity for generating KDVs with

non-trivial accuracy guarantees.

Parallel/distributed and hardware-based methods: In the fourth type
of research studies, researchers propose to adopt (1) paral-

lel/distributed approaches [29, 76, 86, 110] and (2) hardware-based

approaches, including GPU [50, 67, 105, 107] and FPGA [50], to

significantly boost the practical efficiency of generating KDV. Some

of these research studies further combine these approaches with

advanced methods, e.g., computational sharing method [29] and

data sampling method [110].

Other variants of KDV: After we have discussed the state-of-the-

art solutions of KDV, we will discuss two important variants of

KDV, namely network kernel density visualization (NKDV) and

spatiotemporal kernel density visualization (STKDV).

NKDV: Since some categories of geographical events, including traf-

fic accidents and crime events, mainly occur in a road network, us-

ing the Euclidean distance dist(q, p) in the kernel function K(q, p)
(cf. Table 2) can overestimate the density value of each position (cf.

Figure 3). Therefore, geographical researchers [96, 97] propose to re-

place dist(q, p) in K(q, p) by the shortest path distance distG (q, p).
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In this tutorial, we will also discuss this problem setting and review

different methods for efficiently generating NKDV (e.g., [30, 81, 96]).

q2

q1

Figure 3: Although q1 and q2 are close to the black points (i.e.,
geographical events) in terms of the Euclidean distance, q2
is far away from the black points in terms of the shortest
path distance. As such, we should assign a smaller density
value for q2 compared with q1.

STKDV: In practice, some geographical phenomena, e.g., the dis-

tribution of COVID-19 cases, significantly depend on the event

time. Using the COVID-19 cases in Hong Kong (cf. Figure 4) as

an example, note that there are two outbreak regions on January

2022, while there is only one outbreak region on December 2020.

Therefore, the outbreak regions can change with respect to different

timestamps. As such, geographical researchers propose to adopt

STKDV [41, 57, 69]. In this tutorial, we will state this problem set-

ting and discuss different methods [27, 86] for efficiently generating

STKDV.

(a) December 2020 (b) January 2022
Figure 4: The distribution of COVID-19 cases in Hong Kong,
generated by STKDV, depend on the wave/time. (Obtained
from [29])

Case studies and hands-on experience:We will provide the case

studies for analyzing Hong Kong and Macau COVID-19 hotspots

using our COVID-19 hotspot maps [6, 8]. As an example, we show

a snapshot of the Hong Kong COVID-19 hotspot map in Figure 5.

Furthermore, we will also provide hands-on experience for using

our fastest library, LIBKDV [29] (with a few lines of python code),

to generate KDVs in the Hong Kong COVID-19 dataset.

2.3 K-function and Its Variants
In the third part of this tutorial, we will review state-of-the-art

solutions for computing K-function and discuss different variants

of K-function, including network K-function and spatiotemporal

K-function.

State-of-the-art solutions for computing K-function. Com-

paredwith KDV (cf. Section 2.2), only a few of research studies focus

on improving the efficiency for computing K-function, which can

be divided into two classes, namely (1) range-query-based methods

and (2) parallel/distributed and hardware-based methods. In this

tutorial, we will also discuss the pros and cons of these methods.

Figure 5: A snapshot of the Hong Kong COVID-19 hotspot
map.

Range-query-based methods: Recall from Equation 2 that we need

to count all data points pj that are within the distance s from each

data point pi in order to compute the K-function. Therefore, one
approach is to adopt some index structures, e.g., kd-tree [21], ball-

tree [71], and range-tree [40], in order to efficiently obtain the range

query set R(pi ) for each data point pi , where

R(pi ) = {pj ∈ P : dist(pi , pj ) ≤ s}

Based on this set, K-function (cf. Equation 2) can be expressed as

follows.

KP (s) =
∑
pi ∈P

|R(pi )|

Parallel/distributed and hardware-based methods: In the geoscience

community, researchers propose the parallel/distributed algo-

rithms [106] and adopt the modern hardware, e.g., GPU [91], to

improve the efficiency for computing K-function.

Other variants of K-function. Here, we discuss two variants of
K-function, namely network K-function and spatiotemporal K-
function.

Network K-function: Like NKDV (cf. Section 2.2), since many geo-

graphical events, e.g., traffic accidents, are mainly on/along with a

road, usingK-function (based on the Euclidean distancedist(pi , pj ))
can overestimate the statistical results [100]. Using Figure 3 as

an example, two points, q1 and q2, are close to each other in

terms of the Euclidean distance can be far away from each other

in terms of the shortest path distance. As such, geographical re-

searchers [66, 73, 74, 100] propose the network K-function tool,

which replaces the Euclidean distance dist(pi , pj ) by the shortest

path distancedistG (pi , pj ) in Equation 2. In this tutorial, we will dis-
cuss this problem setting and review different methods [33, 74, 81]

for efficiently computing a network K-function and generating a

network K-function plot (like Figure 2).

Spatiotemporal K-function: Like STKDV (cf. Section 2.2), some ge-

ographical phenomena, e.g., disease outbreak, significantly de-

pend on event time (e.g., different waves). As such, using K-
function, which does not consider the occurrence time of each

event, may provide misleading analytic results. Therefore, domain

experts [55, 56, 94] propose another tool, called spatiotemporal K-
function KP̂ (s, t) (cf. Equation 8), which simultaneously considers

both the spatial threshold s and temporal threshold t , to analyze
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a location dataset P̂ = {(p1, tp1 ), (p2, tp2 ), ..., (pn, tpn )} with n spa-

tiotemporal data points.

KP̂ (s, t) =
∑

(pi ,tpi )∈P̂

∑
(pj ,tpj )∈P̂

I(dist(pi , pj ) ≤ s,dist(tpi , tpj ) ≤ t)

(8)

Instead of generating a two-dimensional K-function plot (cf.

Figure 2), they generate a three-dimensional spatiotemporal K-
function plot (cf. Figure 6). Note that the black surface, red sur-

face, and blue surface denote KP̂ (sα , tβ ) (cf. Equation 8), L(sα , tβ )
(cf. Equation 9), and U(sα , tβ ) (cf. Equation 10), respectively, with

M spatial thresholds (1 ≤ α ≤ M) and T temporal thresholds

(1 ≤ β ≤ T ).

L(sα , tβ ) = min(KR̂1

(sα , tβ ),KR̂2

(sα , tβ ), ...,KR̂L
(sα , tβ )) (9)

U(sα , tβ ) = max(KR̂1

(sα , tβ ),KR̂2

(sα , tβ ), ...,KR̂L
(sα , tβ )) (10)

where R̂1, R̂2,..., R̂L are L randomly generated datasets with the

same size n.

Temporal 
threshold

Spatiotemporal 
K-function

dispersed

… … … …

Figure 6: Illustration of a spatiotemporal K-function plot.
In this tutorial, we will state this problem setting and review dif-

ferent efficient methods (e.g., [55]) for computing a spatiotemporal

K-function and generating a spatiotemporal K-function plot.

2.4 Future Opportunities
In the fourth part of this tutorial, we will discuss the future oppor-

tunities for both researchers and practitioners. In the following, we

will highlight some of the promising directions.

Future opportunities for KDV and its variants: There are two
main future research studies for this direction.

Optimal solutions for solving KDV, NKDV, and STKDV: Although

many advanced algorithms have been proposed to reduce the

time complexity for different variants of KDV (e.g., [32] for KDV,

[30] for NKDV, and [27] for STKDV), these algorithms have not

been proven to be optimal. We use KDV (cf. Definition 1) as an

example. Recall that generating KDV needs to compute the kernel

density function FP (q) (cf. Equation 1) for each pixel q. Therefore,
every algorithm needs to at least access all (i.e., n) data points in P
and all (i.e., X × Y ) pixels, which takes Ω(XY + n) time. However,

the state-of-the-art algorithm [32] takes O(Y (X + n)) time, which

still has a significant gap from the lower bound time complexity.

As such, finding the optimal solutions for these problems is the

promising future work.

Complexity-reduced algorithms for other kernel functions: In the

state-of-the-art research studies [27, 30, 32], although these

methods can reduce the time complexity for generating KDV,

NKDV, and STKDV, all these methods only focus on the limited

set of kernel functions (e.g., Epanechnikov, quartic, and uniform

kernels). Therefore, these research studies cannot be extended to

handle other important kernel functions (e.g., Gaussian kernel,

cosine kernel, and exponential kernel) that can be supported by

some famous software packages (e.g., Scikit-learn [75]). Therefore,

finding a complexity-optimized solution for handling other kernel

functions is also the important future work.

Future opportunities for K-function and its variants: There
are two main future research studies in this direction.

Efficient and exact solutions for K-function and its variants: In re-

cent years, there are a few research studies [33, 81] that can suc-

cessfully reduce the time complexity for computing the network

K-function. However, these studies cannot be extended to han-

dle K-function (cf. Equation 2) and spatiotemporal K-function (cf.

Equation 8), which are supported by commonly used software pack-

ages (e.g., R packages [4]). Therefore, existing solutions for solving

these two problems are still in O(n2) time, which are not scalable

to large-scale location datasets (e.g., New York taxi dataset [9]

with 165 million data points), let alone to generate a K-function
plot/spatiotemporal K-function plot. Furthermore, it is still un-

known whether the time complexity of computing network K-
function [33] is optimal. As such, finding efficient and exact solu-

tions, with non-trivial time-complexity guarantees, for supporting

K-function and its variants are still the open problems.

Efficient and approximate solutions for K-function and its variants:
Although many approximation algorithms (e.g., function approxi-

mation methods [25, 34] and data sampling methods [78, 110])

have been developed for efficiently generating an approximate

KDV, none of these approaches, to the best of our knowledge, has

been extended to support K-function and its variants. Consider

Equation 1 and Equation 2. Note that both of them have a common

property: need to aggregate multiple terms. Based on this property,

it is possible to modify approximate algorithms of KDV for

solving these K-function-related problems, which can be another

promising future work.

Future opportunities for other geospatial analytic tools:Many

other geospatial analytic tools, including IDW, Kriging, Moran’s I,

and Getis-Ord General G (cf. Table 1), are also very time-consuming,

which cannot be scalable to large-scale location datasets. For ex-

ample, a naïve implementation of IDW takes O(XYn) time [20],

where X × Y and n denote the number of pixels and the number of

location data points, respectively. To tackle this issue, we propose

three future research studies in this direction.

Complexity-reduced algorithms for other tools: Although there are

many complexity-reduced methods, including data sampling meth-

ods [77–79, 110, 111] and computational sharing methods [26, 32],

for generating KDV with non-trivial accuracy guarantees, no

complexity-reduced algorithm, to the best of our knowledge, has

been proposed for supporting other tools. As such, developing ef-

ficient algorithms with non-trivial accuracy and time-complexity

guarantees for other geospatial analytic tools can be the promis-

ing future work. For example, we can investigate whether some

existing methods for KDV, e.g., data sampling methods, computa-

tional sharing methods, and function approximation methods in
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Section 2.2, can be extended to support these tools with non-trivial

guarantees.

Parallel/distributed and hardware-based algorithms for other tools:
Although some parallel/distributed and hardware-based algorithms

have been proposed to improve the efficiency for supporting

other tools (e.g., [36, 53, 109] for Kriging), all these algorithms are

only based on some basic methods, which can still be slow if a

location dataset contains many data points (e.g., 165 million data

points in the New York taxi dataset [9]). Therefore, investigating

parallel/distributed and hardware-based approaches (e.g., GPU) for

improving the efficiency of complexity-reduced (newly developed)

algorithms can be another promising future work.

Computational hardness of other tools: Instead of improving the ef-

ficiency for supporting other geospatial analytic tools, another

important research topic is to analyze the hardness of each tool

(like the lower bound time complexity Ω(n
4

3 ) of the DBSCAN prob-

lem [48, 49]) such that researchers can understand whether their

newly developed algorithms are theoretically optimal.

Future opportunities for software development: Although

many software packages, e.g., QGIS [11], ArcGIS [1], R packages [4],

and PySAL [10] (a python package), have been developed to sup-

port geospatial analytic tools (cf. Table 1), all of these packages

adopt naïve algorithms, which are inefficient (or even not feasible)

to support large-scale location datasets nowadays. Therefore, the

first promising future work is to develop new packages, based on

efficient algorithms, for these geospatial analytic tools, e.g., python

packages (like our recently developed python library, LIBKDV [29])

and R packages. Furthermore, since QGIS and ArcGIS are very

famous software packages for conducting spatial analysis, the sec-

ond promising future work is to develop QGIS and ArcGIS plugins

(by integrating state-of-the-art algorithms) for supporting these

two software packages. Moreover, domain experts can also adopt

web-based geographic information systems, e.g., QGIS Cloud [12]

and ArcGIS Online [2], to analyze their location datasets, the third

promising future work is to integrate efficient algorithms into these

web-based systems.
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