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Abstract
Line Density Visualization (LDV) has been widely used in different

domains, e.g., transportation science, urban planning, and crimi-

nology. Therefore, various geographic information systems, e.g.,

ArcGIS and QGIS, can also support this tool. However, all these GIS

platforms mainly adopt the naïve algorithm for generating LDV,

which cannot be scalable to high resolution sizes and large-scale

line-segment datasets. To tackle this issue, we have developed a new

QGIS plugin, called Fast Line Density Analysis, for efficiently sup-

porting two types of accurate approximation, namely (1) generating

LDV with an 𝜖-relative error guarantee (𝜖LDV) and (2) generating

LDV with multiple thresholds (𝜏LDV). In this demonstration, we

have prepared three large-scale datasets (with up to 15.7 million line

segments) for participants to compare our plugin with QGIS and Ar-

cGIS in terms of accuracy and efficiency. In particular, participants
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can also tune different parameters in our plugin for understanding

how they can affect the visualization quality and efficiency. The

demonstration video is available in the YouTube and Bilibili links,

which are https://www.youtube.com/watch?v=EYl3Wieb-2I and

https://www.bilibili.com/video/BV1aJwaeMEHr, respectively.
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1 Introduction
Line Density Visualization (LDV) [1, 4] is widely used for analyzing

flow data/trajectory data in various domains, e.g., transportation

science, urban planning, and criminology. Transportation scien-

tists [11, 15] and urban planners [10, 16] adopt LDV to analyze the

traffic flow/trajectory patterns in different cities, while criminolo-

gists [13, 14] adopt LDV to understand crime patterns in different

geographical regions. Figure 1 shows how to adopt LDV to analyze

flow patterns of the Los Angeles bicycle mobility dataset [3]. Ob-

serve that the eastern and western regions of Los Angeles have the

high line density values compared with other regions.

Due to the popularity of LDV, many geographic information

systems, including QGIS [4] and ArcGIS [1], can also support this

visualization tool. However, LDV is computationally expensive,

https://doi.org/10.1145/3722212.3725075
https://www.youtube.com/watch?v=EYl3Wieb-2I
https://www.bilibili.com/video/BV1aJwaeMEHr
https://doi.org/10.1145/3722212.3725075
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(a) Line segment (flow) dataset (b) Line density visualization (LDV)

Figure 1: Generate LDV (in (b)) for the Los Angeles bicycle
mobility dataset, where the red line segments in (a) denote
the bicycle flows that move from one place to another place.
which takes𝑂 (𝑋𝑌𝑛) time, where𝑋 ×𝑌 and 𝑛 denote the resolution

size and the number of line segments (e.g., red line segments in

Figure 1a), respectively. Consider the Los Angeles bicycle mobil-

ity dataset (with 0.402 million line segments) and the 1280 × 960-

resolution as an example. Generating a single LDV for this dataset

takes at least 0.494 trillion operations. As such, LDV cannot be

efficient (or even feasible) to generate high-resolution LDV for a

large-scale line-segment dataset.

To handle the efficiency issues of LDV, we develop a new QGIS

plugin, called Fast Line Density Analysis [2], in this paper. First, this

plugin is based on our preliminary work, LARGE [9], for efficiently

generating approximate LDV with a non-trivial relative error guar-

antee, namely 𝜖LDV. Second, since domain experts [14, 16] need

to generate LDV with a fixed number of color levels, 𝜏LDV (e.g.,

density values
1
in the ranges of [0, 0.25), [0.25, 0.5), [0.5, 0.75), and

[0.75, 1] (i.e., four levels) can be colored by blue, light green, yel-

low, and red, respectively), we further modify our efficient solution

in [9] for this setting. Compared with the traditional LDV tools

in QGIS [4] and ArcGIS [1], Fast Line Density Analysis is the first

plugin that simultaneously (1) generates accurate LDV with non-

trivial guarantees (i.e., 𝜖LDV and 𝜏LDV) and (2) achieves significant

efficiency improvement.Until 20th April 2025, the total number
of downloads of this new plugin has already reached 2,705.

The rest of the demonstration paper is summarized as follows.

We first discuss the technical overview of our plugin, Fast Line

Density Analysis, in Section 2. Then, we illustrate how to use our

plugin in Section 3. Lastly, we provide the demonstration plan in

Section 4.

2 Technical Overview
In this section, we first provide the formal problem definitions

(𝜖LDV and 𝜏LDV) in Section 2.1. Then, we briefly discuss the length-

aggregation-based grid structure, LARGE [9], in Section 2.2. Next,

we further illustrate the bound functions, based on LARGE, in Sec-

tion 2.3. After that, we discuss how to incorporate these bound func-

tions into the filter-and-refinement framework for solving 𝜖LDV

and 𝜏LDV in Section 2.4. Lastly, we discuss a simple yet efficient

approach for specifying the thresholds of 𝜏LDV in Section 2.5.

2.1 Problem Definitions
Recall that we need to color each pixel q based on the line density

function L(q), which computes the accumulated length of all line

1
In this example, we assume that the density values have been normalized to be [0, 1].

segments that are within the bandwidth parameter 𝑏 over the circu-

lar searching area (see Figure 2), for generating LDV. We formally

state LDV in Definition 1.

𝐪𝑏

𝑙2

𝑙1

𝑙4

𝐿3

𝐿2

𝐿1

𝑙3

𝑥

𝑦

𝐿4 = 0

Figure 2: Illustration of computing the line density function,
where L(q) = 𝐿1+𝐿2+𝐿3

𝜋𝑏2
in this example.

Definition 1. Given a set of line segments L = {𝑙1, 𝑙2, ..., 𝑙𝑛} with
size 𝑛 and a bandwidth parameter 𝑏, we need to compute L(q) for
each pixel q.

L(q) = 1

𝜋𝑏2

𝑛∑︁
𝑖=1

𝐿𝑖 (1)

where 𝐿𝑖 denotes the length of the 𝑖 th line segment that is within the
bandwidth parameter 𝑏 from q.

With Definition 1, we then formally define two types of approxi-

mation, 𝜖LDV and 𝜏LDV, in Problem 1 and Problem 2, respectively.

Problem 1. (𝜖LDV) Given a relative error 𝜖 , we need to compute
𝐴(q) for each pixel q so that (1 − 𝜖)L(q) ≤ 𝐴(q) ≤ (1 + 𝜖)L(q).

Problem 2. (𝜏LDV) Given a set of 𝐷 thresholds 𝜏1, 𝜏2,..., 𝜏𝐷 , we
need to classify L(q) to be different color levels 𝐶 (q), where

𝐶 (q) =


0 if L(q) < 𝜏1

1 if 𝜏1 ≤ L(q) < 𝜏2
.
.
.

.

.

.

𝐷 if L(q) ≥ 𝜏𝐷

(2)

2.2 LARGE: A Length-Aggregation-based Grid
Structure

In order to efficiently solve the 𝜖LDV and 𝜏LDV problems, we

need to construct a Length-AggRegation-based Grid structurE

(LARGE) [9], which is shown in Figure 3. Given an original 𝑋 × 𝑌 -

plane (bounded by the blue rectangle in Figure 3a), where each pixel

has size 𝛿𝑥 × 𝛿𝑦 , we need to first find the extended region, which

covers the search range (decided by the bandwidth 𝑏) of each pixel

(i.e., all grey pixels in Figure 3a). With this extended region, we can

then build the grid structure, where each grid stores the accumu-

lated length of all line segments (e.g., the pink grid stores the value

𝜌3 + 𝜌4 = 8.6 in Figure 3a). By constructing the prefix-sum grid

structure (see Figure 3b), it only takes𝑂 (1) time to obtain the length

aggregation value with any rectangular region in the grid structure.

As an example, we only need to access (at most) four green entries

in Figure 3b (i.e., 39.8−23.6−11.6+5 = 9.6) in order to compute the

length aggregation value that is in the red rectangular region of the

grid structure in Figure 3a (i.e., 0.4+ 1.2+ 1.2+ 2.8+ 2.8+ 1.2 = 9.6).

More details that are related to LARGE can be found in our prelim-

inary work [9].
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𝑥

𝑦
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𝑙4
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𝑙6

(a) Find the accumulative length for each grid in the grid structure.

𝜌4

𝜌3
5 5 5 8.6 0 0 0 0 5.7

0 0 0 0 0 0 1.2 6.3 0

0 0 0 0 0 0 02.82.8

1.21.20 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

6.6 0.4

2.6 2.8

(b) Obtain the prefix-sum grid structure (LARGE).

0

5 10 15 23.623.6 23.623.623.629.3

5 10 15 23.623.6 23.6 24.8 31.136.8

5 10 15 23.623.626.4 30.436.742.4

5 10 15 23.624.828.8 32.8 39.144.8

5 10 15 23.624.828.8 32.8 39.144.8

11.6 17 22 30.6 31.835.839.8 46.151.8

11.619.6 27.4 36 37.241.245.2 51.557.2𝑏

𝛿𝑥
𝛿𝑦

Figure 3: Constructing the prefix-sum grid structure, LARGE (in (b)), for an example dataset with six line segments (in (a)).

2.3 Bound Functions
Observe from Figure 2 that computing L(q) is based on calculating

the accumulated length of all line segments that are within the

bandwidth (or search range) 𝑏 from q. Therefore, all grids that are
within the search range (i.e., Figure 4a and Figure 4c) and that cover

the search range (i.e., Figure 4b and Figure 4d) can act as the lower

bound functions and the upper bound functions, respectively.

𝑥

𝑦

𝑥
(a) 𝐿𝐵 (𝐪)

𝑦

𝑥

𝑦

𝑥
(c) 𝐿𝐵𝑎(𝐪) (d) 𝑈𝐵𝑎(𝐪)

(b) 𝑈𝐵 (𝐪)

𝑦

Figure 4: Illustration of the square-shaped (a and b) and
arbitrary-shaped (c and d) bound functions.

With the prefix-sum grid structure, LARGE, which can calcu-

late the aggregation value of any rectangular region in 𝑂 (1) time,

our preliminary work [9] states that the square-shaped bound

functions (𝐿𝐵□ (q) and 𝑈𝐵□ (q)) and the arbitrary-shaped bound

functions (𝐿𝐵𝑎 (q) and𝑈𝐵𝑎 (q)) can be computed in 𝑂 (1) time and

𝑂 (min(𝑋,𝑌 )) time (by simply regarding each row of grids or each

column of grids as a rectangular region in Figure 4c and Figure 4d),

respectively.

2.4 Filter-and-Refinement Framework
Once we have the lower and upper bound functions, we adopt the

filter-and-refinement framework [6–8] for solving the 𝜖LDV and

𝜏LDV problems.

𝜖LDV.Observe from Figure 5a that we can have the valid approxima-

tion value𝐴(q) = 𝐿𝐵 (q)+𝑈𝐵 (q)
2

for each pixel q in the 𝜖LDV problem

if the condition 𝑈𝐵(q) ≤ (1 + 𝜖)𝐿𝐵(q) holds. Therefore, we pro-
gressively check whether the (𝐿𝐵□ (q),𝑈𝐵□ (q))-pair and (𝐿𝐵𝑎 (q),
𝑈𝐵𝑎 (q))-pair can fulfill the condition. If both pairs cannot fulfill

this condition, we adopt the state-of-the-art R-tree structure [12]

for computing the exact value of L(q).
𝜏LDV. Observe from Figure 5b that we have 𝐶 (q) = 𝑖 in the 𝜏LDV

problem if 𝜏𝑖 ≤ 𝐿𝐵(q) ≤ 𝑈𝐵(q) < 𝜏𝑖+1, where 0 ≤ 𝑖 ≤ 𝐷 (Here, we

define two dummy parameters 𝜏0 = 0 and 𝜏𝐷+1 = ∞). Like 𝜖LDV,

we first adopt the progressive approach ((1) (𝐿𝐵□ (q),𝑈𝐵□ (q))-pair
and (2) (𝐿𝐵𝑎 (q), 𝑈𝐵𝑎 (q))-pair) to check whether the condition is

fulfilled and then adopt the R-tree structure for computing L(q) if
the condition cannot be satisfied by all pairs of bound functions.

ℒ 𝐪

1 − 𝜖 ℒ 𝐪

1 + 𝜖 ℒ 𝐪

𝜏𝑖

𝜏𝑖+1
𝑈𝐵 𝐪

𝐿𝐵 𝐪

…
…

(a) 𝜖LDV (b) 𝜏LDV

𝐿𝐵 𝐪 + 𝑈𝐵 𝐪

2

𝑈𝐵 𝐪 ≤ 1 + 𝜖 𝐿𝐵(𝐪)

𝐿𝐵 𝐪

𝐿𝐵 𝐪 + 𝑈𝐵 𝐪

2

Figure 5: The filtering condition of using the lower and upper
bound functions for solving the 𝜖LDV and 𝜏LDV problems.

2.5 Specification of Thresholds for 𝜏LDV
In practice, it can be challenging to set the suitable threshold values

(i.e., 𝜏1, 𝜏2,..., 𝜏𝐷 ) for 𝐶 (q) (see Equation 2) before knowing L(q)
of all pixels q. However, evaluating exact L(q) can be very inef-

ficient. Therefore, we propose to adopt the most efficient 𝐿𝐵□ (q)
and 𝑈𝐵□ (q) to estimate the range [L,U] of L(q), where (for all
pixels q)

L =min

q
𝐿𝐵□ (q) ≤ L(q) ≤ max

q
𝑈𝐵□ (q) = U (3)

With this range [L,U], we can set the thresholds 𝜏𝑖 (1 ≤ 𝑖 ≤ 𝐷) by

dividing this range with equal-size intervals, where

𝜏𝑖 = L + 𝑖 ×
(U − L
𝐷 + 1

)
(4)

As a remark, since the time complexity of computing 𝐿𝐵□ (q) and
𝑈𝐵□ (q) is 𝑂 (1), we can specify these 𝐷 thresholds (by evaluating

L and U) in 𝑂 (𝑋𝑌 ) time, which is efficient.
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3 Illustration of Our Plugin
Based on the techniques in Section 2, we further develop the QGIS

plugin, called Fast Line Density Analysis [2] (see Figure 6). In this

section, we discuss different components of this plugin.

(a)

(b)

(c)

Figure 6: The user interface of our plugin, namely Fast Line
Density Analysis, for QGIS.
Component (a) (Details of the input file): Users need to provide

a csv file name in the box of "Input CSV file". Observe from Figure 7

that the first row specifies the attribute names of the starting point

("SP") and the ending point ("EP") of all line segments. Moreover,

each row in this file stores two attributes of POINT(longitude lati-

tude) to represent the starting point and the ending point of each

line segment. Therefore, users need to choose "SP" and "EP" in the

drop-down list of "start point" and "end point", respectively.

Figure 7: An example input file.

Component (b) (Parameters of LDV): Users need to set the reso-

lution size in the "Width" and "Height" boxes (e.g., 320 pixels and

240 pixels in the width (x-axis) and height (y-axis), respectively, in

Figure 6) and set the bandwidth value 𝑏 (e.g., 1000m in Figure 6).

Component (c) (LDV (or Problem) type): Users need to choose the
LDV types, which are either 𝜖LDV (see Problem 1) or 𝜏LDV (see

Problem 2). If 𝜖LDV is selected, the "Relative error" box is enabled

for users to set the value of relative error 𝜖 (e.g., 0.1). If 𝜏LDV is

selected, the "Number of thresholds" box is enabled for users to set

the number of thresholds 𝐷 (e.g., 10).

Once all parameters have been provided in the plugin, users can

click the "Run" button (see Figure 6) for generating the approximate

LDV (either 𝜖LDV or 𝜏LDV).

4 Demonstration Plan
In this demonstration, we adopt three large-scale datasets (with up

to 15.7 million line segments), which are (1) Los Angeles bicycle

mobility dataset [3], (2) San Francisco taxi mobility dataset [5],

and (3) Shenzhen vehicle mobility dataset (obtained from the Shen-

zhen Transportation Bureau), for testing. Here, we consider four

demonstration scenarios.

Investigation of the choice of the relative error 𝜖 in 𝜖LDV. Recall
from Problem 1 that users need to choose the relative error 𝜖 in

order to generate 𝜖LDV. Therefore, users can have this question.

Which 𝜖 should be chosen in practice? To answer this question, we

first generate (1) multiple 𝜖LDVs by varying 𝜖 (e.g., 0.05, 0.1, 0.15,

and 0.2) and (2) the exact LDV for each dataset. Then, we compare

the visualization quality and the efficiency of 𝜖LDVs with the exact

LDV, which can show the trade-off between these two aspects.

Investigation of the number of thresholds 𝐷 in 𝜏LDV. Like
𝜖LDV, users also need to choose the number of thresholds 𝐷 in

advance for generating 𝜏LDV (see Problem 2). Therefore, we also

compare the visualization quality and the efficiency for generating

multiple 𝜏LDVs (by choosing 𝐷 = 5, 10, 15, and 20) and the exact

LDV so that we can understand the trade-off between them.

Comparisons of Fast Line Density Analysis with QGIS and
ArcGIS. Since QGIS [4] and ArcGIS [1] can support LDV, we also

compare the efficiency and the visualization quality of our plugin

with them using the three large-scale datasets in the demonstration.

Investigation of bandwidth tuning. Note that the bandwidth
parameter 𝑏 (see Figure 2 and Definition 1) can affect the visualiza-

tion quality of LDV. In our demonstration, we vary 𝑏 for generating

multiple 𝜖LDVs and 𝜏LDVs so that users can understand how to

choose the best bandwidth 𝑏 for each dataset.
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