
LARGE: A Length-Aggregation-based Grid Structure for Line
Density Visualization

Tsz Nam Chan

Shenzhen University

edisonchan@szu.edu.cn

Bojian Zhu

Hong Kong Baptist University

csbjzhu@comp.hkbu.edu.hk

Dingming Wu

Shenzhen University

dingming@szu.edu.cn

Yun Peng

Institute of Artificial Intelligence and

Blockchain, Guangzhou University

yunpeng@gzhu.edu.cn

Leong Hou U

University of Macau

ryanlhu@um.edu.mo

ABSTRACT
Line Density Visualization (LDV) is an important operation of

geospatial analysis, which has been extensively used in many ap-

plication domains, e.g., urban planning, criminology, and trans-

portation science. However, LDV is computationally demanding.

Therefore, existing exact solutions are not scalable (or even not

feasible) to support large-scale datasets and high resolution sizes

for generating LDV. To handle the efficiency issues, we develop

the first solution to approximately compute LDV with an 𝜖-relative

error guarantee, which consists of two main parts. First, we develop

the new indexing structure, called length-aggregation-based grid

structure (LARGE). Second, based on LARGE, we develop two types

of fast bound functions, namely (1) square-shaped lower and upper

bound functions and (2) arbitrary-shaped lower and upper bound

functions, which can filter a large portion of unnecessary com-

putations. By theoretically analyzing the tightness of our bound

functions and experimentally comparing our solution with existing

exact solutions on four large-scale datasets, we demonstrate that

our solution can be scalable to generate high-resolution LDVs using

large-scale datasets. In particular, our solution achieves up to 291.8x

speedups over the state-of-the-art solutions.

PVLDB Reference Format:
Tsz Nam Chan, Bojian Zhu, Dingming Wu, Yun Peng, and Leong Hou U.

LARGE: A Length-Aggregation-based Grid Structure for Line Density

Visualization. PVLDB, 17(13): 4585 - 4598, 2024.

doi:10.14778/3704965.3704968

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/edisonchan2013928/LARGE.

1 INTRODUCTION
Density visualization [80, 84] is an important field in many com-

munities. Among most of these tools, Line Density Visualiza-

tion (LDV) [84] is a de facto tool for analyzing the density of

flow data/trajectory data, which has been extensively used in

Dingming Wu is the corresponding author of this paper.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.

doi:10.14778/3704965.3704968

many application domains. Urban planners and ecologists adopt

LDV to (1) analyze human mobility and animal mobility, respec-

tively [11, 31, 38, 41, 61, 74, 75, 77], (2) conduct urban anal-

ysis [62, 94, 95], (3) conduct disaster analysis [9, 39], and (4)

conduct environmental analysis [83, 90]. Criminologists utilize

LDV to understand crime patterns in different geographical re-

gions [85, 86]. Transportation experts utilize LDV to analyze traffic

flows/trajectories in different cities [41, 50, 60, 64, 69, 93]. Figure 1

shows how the domain expert [75] uses LDV to analyze the density

of migration flows in the UK mobility dataset. Observe that the

flows mainly concentrate on the south part of the United Kingdom.

(a) Line segment (flow) dataset (b) Line density visualization (LDV)

Figure 1: Generate LDV (in (b)) for the UK mobility dataset,
where the red line segments in (a) denote the migration
flows that move from one place to another place (Obtained
from [75]).

Due to the wide applicability of LDV, many contemporary and fa-

mous software platforms, e.g., QGIS [5] and ArcGIS [1], can also sup-

port LDV. However, LDV is a slow operation, which takes 𝑂 (𝑋𝑌𝑛)
time for generating a single visualization, where𝑋 ×𝑌 and 𝑛 denote

the resolution size and the number of line segments in a dataset,

respectively. Using the New York taxi dataset (with 13.6 million line

segments) as an example, generating a single LDV with the resolu-

tion size 1280 × 960 based on the naïve method takes 16.7 trillion

operations. As such, many domain experts have pointed out the

efficiency issues to adopt the LDV tool for performing geospatial

analysis [26, 66]. Despite this, there is still a lack of research studies

to develop efficient algorithms for supporting this tool.

4585

https://doi.org/10.14778/3704965.3704968
https://github.com/edisonchan2013928/LARGE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704968
https://www.acm.org/publications/policies/artifact-review-and-badging-current

To boost the efficiency of using LDV, we ask a question in this pa-

per. Can we develop efficient algorithms for generating LDV, without
degrading the visualization quality? In order to provide an affirma-

tive answer to this question, we have proposed the first approximate

solution that can efficiently compute LDV with an 𝜖-relative error

guarantee, by (1) developing the indexing structure, called Length-

AggRegation-based Grid structurE (LARGE), (2) developing the

tight lower and upper bound functions that can efficiently filter a

large portion of unnecessary computations (based on LARGE), and

(3) discovering that our bound functions can be theoretically tighter

if the pixel size is smaller (i.e., high resolution) or the bandwidth

value (will be discussed in Section 2.1) is larger, which indicates that

LARGE can be scalable to high resolution sizes and large bandwidth

values. To the best of our knowledge, this theoretical result has not

been achieved by any previous work. In practice, our experiment

results on four large-scale datasets (up to 14.3 million line segments)

show that LARGE can achieve speedups of 2.35x to 291.8x over the

state-of-the-art methods, without incurring huge space overhead.

Furthermore, our case study also verifies that LARGE does not de-

grade the visualization quality compared with the exact approach.

Moreover, we have also developed the new QGIS plugin (based

on LARGE), called Fast Line Density Analysis [2], for efficiently

supporting LDV.

The rest of the paper is structured as follows. We first formally

define LDV and discuss two baseline (exact) solutions in Section 2.

Then, we discuss our solution, LARGE, in Section 3. Next, we pro-

vide the experimental evaluation in Section 4. After that, we review

the related work in Section 5. Lastly, we conclude this paper in

Section 6.

2 PRELIMINARIES
In this section, we first discuss the problem definition of LDV in

Section 2.1. Then, we discuss two baseline solutions, which are

(1) sequential scan and (2) hierarchical indexing framework, in

Section 2.2 and Section 2.3, respectively.

2.1 Problem Definition
In order to generate LDV (cf. Figure 1b) for a line segment dataset

(cf. Figure 1a), we need to color each pixel q = (𝑞𝑥 , 𝑞𝑦) based on the

line density functionL(q), which counts the accumulated length of

all line segments that are within the search range (or the bandwidth)

𝑏 from q per unit area. Using Figure 2 as an example, the line density

function value L(q) (for the pixel q) is 𝐿1+𝐿2+𝐿3
𝜋𝑏2

.

𝐪𝑏

𝑙2

𝑙1

𝑙4

𝐿3

𝐿2

𝐿1

𝑙3

𝑥

𝑦

ℓ3 𝑢3෪ℓ3 ෦𝑢3

Figure 2: The line density function value for the pixel q is
𝐿1+𝐿2+𝐿3

𝜋𝑏2
.

Based on the above discussion, we formally define LDV. Here,

we first define the concept of line segment in Definition 1.

Definition 1. Each line segment 𝑙𝑖 is represented by the equation
𝑦 =𝑚𝑖𝑥 + 𝑘𝑖 , where ℓ𝑖 ≤ 𝑥 ≤ 𝑢𝑖 .

To find the length 𝐿𝑖 of each line segment 𝑙𝑖 that is within the

bandwidth 𝑏 from q (i.e., the dashed circle in Figure 2), we need to

find ℓ̃𝑖 and 𝑢𝑖 (e.g., ℓ̃3 and 𝑢3 in Figure 2) such that:

ℓ̃𝑖 =min({𝑥 ∈ [ℓ𝑖 , 𝑢𝑖] : 𝑦 =𝑚𝑖𝑥 + 𝑘𝑖 , (𝑥 − 𝑞𝑥)2 + (𝑦 − 𝑞𝑦)2 ≤ 𝑏2}) (1)

𝑢𝑖 =max({𝑥 ∈ [ℓ𝑖 , 𝑢𝑖] : 𝑦 =𝑚𝑖𝑥 + 𝑘𝑖 , (𝑥 − 𝑞𝑥)2 + (𝑦 − 𝑞𝑦)2 ≤ 𝑏2}) (2)

As a remark, we denote ℓ̃𝑖 = 𝜙 and 𝑢𝑖 = 𝜙 to indicate that the line

segment is never inside the bandwidth 𝑏 from q (e.g., ℓ̃4 = 𝜙 and

𝑢4 = 𝜙 in Figure 2).

Based on simple mathematical operations, the length 𝐿𝑖 is stated

in Equation 3.

𝐿𝑖 =

{√︃
1 +𝑚2

𝑖
· |𝑢𝑖 − ℓ̃𝑖 | if ℓ̃𝑖 ≠ 𝜙 and 𝑢𝑖 ≠ 𝜙

0 otherwise

(3)

With the above concepts, LDV is formally stated in Definition 2.

Definition 2. [1, 5] Given a line segment dataset L =

{𝑙1, 𝑙2, ..., 𝑙𝑛} with size 𝑛, a resolution size 𝑋 × 𝑌 , and a bandwidth
parameter 𝑏, we need to compute L(q) for each pixel q = (𝑞𝑥 , 𝑞𝑦),
where

L(q) = 1

𝜋𝑏2

𝑛∑︁
𝑖=1

𝐿𝑖 (4)

2.2 Baseline Solution 1: Sequential Scan
To generate LDV, a simple approach, which has been adopted in

QGIS [5] and ArcGIS [1], is to first scan each line segment 𝑙𝑖 in

the line segment dataset L and then evaluate the length 𝐿𝑖 (cf.

Equation 3) in order to compute the line density function L(q) for
each pixel q (cf. Equation 4). By considering four possible cases

of the endpoints, i.e., (ℓ𝑖 , 𝑦ℓ𝑖) and (𝑢𝑖 , 𝑦𝑢𝑖), of each line segment

(cf. Figure 3), 𝐿𝑖 can be computed in 𝑂 (1) time (i.e., this simple

approach can generate LDV in 𝑂 (𝑋𝑌𝑛) time.).

Case 1: Observe from Figure 3a that these two endpoints are within

the bandwidth𝑏 from the pixel q. Therefore, we can simply compute

𝐿𝑖 by setting ℓ̃𝑖 = ℓ𝑖 and 𝑢𝑖 = 𝑢𝑖 in Equation 3, which takes 𝑂 (1)
time.

Case 2: In Figure 3b, note that (ℓ𝑖 , 𝑦ℓ𝑖) and (𝑢𝑖 , 𝑦𝑢𝑖) are inside and
outside the search range, respectively. Therefore, this line segment

𝑙𝑖 must intersect the black dashed circle. Once we substitute the

equation 𝑦 =𝑚𝑖𝑥 + 𝑘𝑖 into (𝑥 − 𝑞𝑥)2 + (𝑦 − 𝑞𝑦)2 = 𝑏2, there must

exist the solution 𝑥 = 𝑢𝑖 for the following quadratic equation.

𝐴𝑥2 + 𝐵𝑥 +𝐶 = 0

where 𝐴 = 1 +𝑚2

𝑖
, 𝐵 = 2𝑚𝑖𝑘𝑖 − 2𝑞𝑥 − 2𝑚𝑖𝑞𝑦 , and 𝐶 = 𝑞2𝑥 + 𝑘2

𝑖
−

2𝑘𝑖𝑞𝑦 +𝑞2𝑦 −𝑏2. As such, we can compute 𝑢𝑖 based on the following

equation.

𝑢𝑖 =
−𝐵 +

√
𝐵2 − 4𝐴𝐶

2𝐴
(5)

Since the parameters 𝐴, 𝐵, and 𝐶 can be computed in 𝑂 (1) time,

we can obtain 𝑢𝑖 and the length 𝐿𝑖 (by using ℓ̃𝑖 = ℓ𝑖 and this 𝑢𝑖 in

Equation 3) in 𝑂 (1) time.

4586

𝑦

𝑙𝑖
(ℓ𝑖 , 𝑦ℓ𝑖)

𝑥

(𝑢𝑖 , 𝑦𝑢𝑖)

𝐪
≤ 𝑏 ≤ 𝑏

𝑦

𝑥

≤ 𝑏
𝐪

> 𝑏

(ℓ𝑖 , 𝑦ℓ𝑖)

(𝑢𝑖 , 𝑦𝑢𝑖)
𝑙𝑖

𝑢𝑖

(a) Case 1 (b) Case 2

𝑦

𝑥

𝐪
≤ 𝑏> 𝑏

(ℓ𝑖 , 𝑦ℓ𝑖)

(𝑢𝑖 , 𝑦𝑢𝑖)
𝑙𝑖

෩ℓ𝑖

𝑦

𝑥

> 𝑏

> 𝑏

𝐪

(ℓ𝑖 , 𝑦ℓ𝑖)

(𝑢𝑖 , 𝑦𝑢𝑖)

𝑙𝑖

(c) Case 3 (d) Case 4a

𝑦

𝑥

> 𝑏> 𝑏

𝐪

(ℓ𝑖 , 𝑦ℓ𝑖)
(𝑢𝑖 , 𝑦𝑢𝑖)𝑙𝑖

𝑢𝑖

𝑦

𝑥

𝐪
> 𝑏> 𝑏

(ℓ𝑖 , 𝑦ℓ𝑖)

(𝑢𝑖 , 𝑦𝑢𝑖)
𝑙𝑖

𝑢𝑖෩ℓ𝑖

(e) Case 4b (f) Case 4c

Figure 3: Four possible cases for the endpoints of each line
segment.

Case 3: In Figure 3c, observe that (ℓ𝑖 , 𝑦ℓ𝑖) and (𝑢𝑖 , 𝑦𝑢𝑖) are outside
and inside the search range, respectively. This case is similar to

Case 2. Instead, we need to find ℓ̃𝑖 where

ℓ̃𝑖 =
−𝐵 −

√
𝐵2 − 4𝐴𝐶

2𝐴
(6)

As such, the length 𝐿𝑖 can be computed in 𝑂 (1) time.

Case 4: In this case, both (ℓ𝑖 , 𝑦ℓ𝑖) and (𝑢𝑖 , 𝑦𝑢𝑖) are not within the

search range 𝑏 from q. This case is the most complicated one, which

consists of three subcases (cf. Figures 3d-f).

Case 4a: Observe from Figure 3d that the extended line (purple

dotted line) never intersects the black dashed circle. We can identify

this subcase (i.e., the length 𝐿𝑖 = 0) if 𝐵2 − 4𝐴𝐶 < 0, which can be

computed in 𝑂 (1) time.

Case 4b: In this subcase (cf. Figure 3e), we have 𝐵2 − 4𝐴𝐶 ≥ 0.

Once 𝑢𝑖 < ℓ𝑖 , we can conclude 𝐿𝑖 = 0 (with 𝑂 (1) time).
1

Case 4c: In Figure 3f, note that we also have 𝐵2 − 4𝐴𝐶 ≥ 0. Once

ℓ𝑖 ≤ ℓ̃𝑖 ≤ 𝑢𝑖 ≤ 𝑢𝑖 , we can directly compute 𝐿𝑖 based on Equation 3

in 𝑂 (1) time.

2.3 Baseline Solution 2: Hierarchical Indexing
Framework

Observe from Figure 4 that once the minimum bounding rectangle

𝑅 does not intersect the search region (black dashed circle) of q (i.e.,
𝑚𝑖𝑛𝑑𝑖𝑠𝑡 (q, 𝑅) > 𝑏), all the line segments that are inside 𝑅 cannot

contribute to the line density function L(q) (like Figure 3d and

1
For sake of simplicity, we omit the subcase ℓ̃𝑖 > 𝑢𝑖 , which also leads to 𝐿𝑖 = 0.

Figure 3e). Therefore, we can avoid the computation of the length

𝐿𝑖 for all those line segments in 𝑅.

𝑦

𝑥

𝑅

𝑏
𝐪

Figure 4: Those line segments in the minimum bounding
rectangle 𝑅 can be filtered since all those line segments are
far away from the pixel q (i.e., theminimumdistance between
q and 𝑅 is larger than 𝑏 (𝑚𝑖𝑛𝑑𝑖𝑠𝑡 (q, 𝑅) > 𝑏)).

Inspired by this idea, one basic method is to extend the hierarchi-

cal indexing framework for line segments [45–47] (cf. Figure 5) to

improve the performance for evaluating the line density function

L(q). Some representative indexing structures include R-tree [54]

and PMR quadtree [45–47]. Given a pixel q (e.g., the red point in

Figure 5), this method iteratively traverses each node (starting from

the root node). If the minimum bounding rectangle of each node in-

tersects the search region, it continuously traverses its child nodes.

As an example, since the blue dotted rectangle of the node 𝑅𝑟𝑜𝑜𝑡
intersects the black dashed circle, this method needs to traverse 𝑅1
and 𝑅2. Otherwise, this method avoids traversing its child nodes.

For example, since𝑚𝑖𝑛𝑑𝑖𝑠𝑡 (q, 𝑅1) > 𝑏, we do not need to traverse

𝑅3 and 𝑅4. Once this method reaches the leaf node, it adopts the

sequential scan method (cf. Section 2.2) to evaluate the length 𝐿𝑖
for each line segment 𝑙𝑖 in this node if the corresponding minimum

bounding rectangle intersects the search range. For example, we

need to compute the lengths 𝐿5 and 𝐿6 (for the line segments 𝑙5
and 𝑙6, respectively) since the minimum bounding rectangle of the

node 𝑅5 intersects the search range of q. Otherwise, this method

avoids the computation of the length for each line segment in the

leaf node (e.g., 𝑙7 and 𝑙8 in the leaf node 𝑅6).

𝑦

𝑥

𝑙1

𝑙2

𝑙3
𝑙4

𝑙5
𝑙6

𝑙7
𝑙8

𝑅𝑟𝑜𝑜𝑡
𝑅1

𝑅2
𝑅3

𝑅4

𝑅5

𝑅6

𝑅𝑟𝑜𝑜𝑡

𝑅1

𝑙1, 𝑙2

𝑅4𝑅3
𝑙3, 𝑙4 𝑙5, 𝑙6

𝑅6𝑅5
𝑙7, 𝑙8

𝑅2
𝐪𝑏

Figure 5: A hierarchical indexing framework. This method
traverses the yellow nodes and compute the lengths, 𝐿5 and
𝐿6, for the line segments (in red), 𝑙5 and 𝑙6, respectively, in
order to evaluate L(q) for the pixel q.

Although this method can efficiently filter those line segments

that are far away from the pixel q (cf. Figure 4), it cannot improve

the efficiency for handling those line segments that are (1) close to

the pixel q (e.g., Figures 3a, b, c, and f) and (2) long (which results

in large minimum bounding rectangles). Hence, if we consider the

large line segment dataset (i.e., more line segments can possibly

4587

intersect the search range of each pixel q and can be possibly long.),

this method can still be slow.

3 OUR SOLUTION
In this section, we first discuss the core idea of our solution in

Section 3.1. Then, we propose the new indexing structure, called

Length-AggRegation-based Grid structurE (LARGE), in Section 3.2.

Next, we further propose the square-shaped and arbitrary-shaped

(lower and upper) bound functions in Section 3.3 and Section 3.4,

respectively. After that, we illustrate how to incorporate these lower

and upper bound functions into the filter and refinement framework

for efficiently generating LDV in Section 3.5. Lastly, we further

investigate the tightness of our bound functions in Section 3.6.

3.1 Core Idea
Observe from Figure 6 that all line segments intersect the search

range (i.e., the black dashed circle) of the pixel q. As such, the
state-of-the-art indexing methods (cf. Section 2.3) cannot filter all

these line segments, which can incur huge computational overhead.

However, not the full portion of each line segment is important

for the pixel q. For example, the red portion of each line segment

only intersects the black dashed circle with a small length, which

only contributes a small value for the line density function L(q) (cf.
Equation 4). Hence, a core idea is that it is possible to achieve a good

approximation of L(q) if we only compute the majority of density

values for those line segments (i.e., with black portion), which can

further improve the efficiency without significantly degrading the

visualization quality.

𝑦

𝑥

𝐪

Figure 6: All line segments can contribute to the line density
function L(q). However, the black portion of each line seg-
ment is more important, which can contribute more density
values.

Therefore, instead of adopting exact solutions (like Section 2.2

and Section 2.3) for generating LDV, we aim to generate approx-

imate LDV with a small relative error 𝜖 (cf. Definition 3) in this

paper.

Definition 3. Given a line segment dataset L = {𝑙1, 𝑙2, ..., 𝑙𝑛}
with size 𝑛, a resolution size 𝑋 × 𝑌 , a bandwidth parameter 𝑏, and a
relative error 𝜖 , we need to obtain the result 𝑅(q) for each pixel q so
that

(1 − 𝜖)L(q) ≤ 𝑅(q) ≤ (1 + 𝜖)L(q) (7)

3.2 LARGE: A Length-Aggregation-based Grid
Structure

In order to efficiently compute LDV with an 𝜖-relative error guar-

antee (cf. Definition 3), we construct the new indexing structure,

called LARGE (i.e., length-aggregation-based grid structure), which

consists of three steps, namely (1) obtain the extended region for

the plane with 𝑋 × 𝑌 pixels, (2) aggregate the accumulated length

of each grid in the extended region, and (3) build the prefix-sum

grid structure based on the accumulated lengths of all grids.

Step 1: Recall from Figure 2 that we need to count the accumulated

length for all line segments that are within the bandwidth 𝑏 from

each pixel q (where each pixel q covers the grid with size 𝛿𝑥 ×𝛿𝑦 in

Figure 7). Therefore, we append the additional grids (i.e., the blue

grids in Figure 7) so that this extended region can cover the search

range (the black dashed circle) of every pixel q.

𝑏
𝑏

𝛿𝑥

𝛿𝑦

𝑥

𝑦

Figure 7: Obtain the extended region (the yellow and blue
regions) from the original plane with𝑋 ×𝑌 pixels (the yellow
region), given the bandwidth value 𝑏.

In practice, if the bandwidth 𝑏 is very large, LDV can assign

high density values for all pixels (cf. Equations 1 to 4), which can

provide meaningless visualization. Hence, we have an assumption

that 𝑏 ≤ min((𝑋 − 0.5)𝛿𝑥 , (𝑌 − 0.5)𝛿𝑦) (i.e., the search range in

Figure 7 cannot cover all 𝑋 yellow grids in a row and all 𝑌 yellow

grids in a column) in this paper. With this assumption, we state in

Lemma 1 that the number of grids in the extended region remains

in 𝑂 (𝑋𝑌).
Lemma 1. Consider the pixel plane with size 𝑋 ×𝑌 and each pixel

covers the grid with size 𝛿𝑥 × 𝛿𝑦 . If the bandwidth 𝑏 ≤ min((𝑋 −
0.5)𝛿𝑥 , (𝑌 − 0.5)𝛿𝑦), there are at most 𝑂 (𝑋𝑌) grids in the extended
region.

Proof. Since each pixel has size 𝛿𝑥 × 𝛿𝑦 and 𝑏 ≤ min((𝑋 −
0.5)𝛿𝑥 , (𝑌 − 0.5)𝛿𝑦), this bandwidth value can cover at most

min(𝑋,𝑌) pixels. Observe from Figure 7 that the x-axis and the

y-axis can cover at most 𝑂 (𝑋 +min(𝑋,𝑌)) and 𝑂 (𝑌 +min(𝑋,𝑌))
pixels, respectively. Therefore, the extended region still covers at

most 𝑂 (𝑋𝑌) grids. □

Step 2: After we have obtained the extended region (i.e., the colored

grids in Figure 8), we need to augment the accumulated length of

each grid in this region (e.g., augment 𝜌3 + 𝜌4 for the pink grid in

Figure 8). To achieve this goal, we need to first find the intersection

point that is closest to the starting point (ℓ𝑖 , 𝑦ℓ𝑖) (i.e., with the min-

imum 𝑥-coordinate) in the extended region for each line segment

𝑙𝑖 (cf. red dashed circles in Figure 8).

In Figure 9, note that the starting point (ℓ𝑖 , 𝑦ℓ𝑖) (i.e., the black
point) of any line segment 𝑙𝑖 can lie on seven possible regions (I to

VII), e.g., both (ℓ2, 𝑦ℓ2) and (ℓ3, 𝑦ℓ3) in Figure 8 belong to Region II

of Figure 9. We examine, in each of these seven regions, the po-

tential intersections of line segments (indicated by dashed lines)

4588

𝑥

𝑙1

𝑙2

𝑙4

𝑙5
𝑙6

𝜌4

(ℓ6, 𝑦ℓ6)
(ℓ4, 𝑦ℓ4)

(ℓ2, 𝑦ℓ2)

(ℓ1, 𝑦ℓ1)

(ℓ5, 𝑦ℓ5)

𝑦

𝜌3

(ℓ3, 𝑦ℓ3)
𝑙3

Figure 8: Obtain the accumulated length of each grid in the
extended region (i.e., the colored grids) for this example of
six line segments, where the accumulated length for the pink
grid is 𝜌3 + 𝜌4.

originating from a starting point with the extended region (and the

corresponding intersection points that are closest to this starting

point).

𝑥

I

II

IV

V

VI

VII

𝑦 = 𝑦𝒰

𝑥 = 𝑥ℒ 𝑥 = 𝑥𝒰

𝑦

𝑦 = 𝑦ℒIII

Figure 9: Given the extended region (i.e., the grey region),
the starting point (ℓ𝑖 , 𝑦ℓ𝑖) of each line segment 𝑙𝑖 (the black
data point) with equation 𝑦 = 𝑚𝑖𝑥 + 𝑘𝑖 , where ℓ𝑖 ≤ 𝑥 ≤ 𝑢𝑖 ,
can be in seven possible regions (from I to VII). The dashed
lines (from I to VI) denote the possible line segments that can
intersect the extended region, while the cross symbol (from
VII) indicates that all line segments (with the corresponding
starting points) never intersect the extended region.

Consider the starting point (ℓ𝑖 , 𝑦ℓ𝑖) that is in the region I, region II,
or region III. The line segment from this starting point can intersect

the left boundary (e.g., the red dashed line segment, the orange

dashed line segment, or the brown dashed line segment in Figure 9)

of the extended region with the intersection point (𝑥L ,𝑚𝑖𝑥L + 𝑘𝑖)
if 𝑦L ≤ 𝑚𝑖𝑥L + 𝑘𝑖 ≤ 𝑦U and the Euclidean distance between

(𝑥L ,𝑚𝑖𝑥L + 𝑘𝑖) and (ℓ𝑖 , 𝑦ℓ𝑖) is less than the bandwidth 𝑏.

Consider the starting point (ℓ𝑖 , 𝑦ℓ𝑖) that is in the region I or

region IV. The line segment from this starting point can inter-

sect the upper boundary (e.g., the blue dashed line segment or the

green dashed line segment in Figure 9) with the intersection point

(𝑦U−𝑘𝑖
𝑚𝑖

, 𝑦U) if 𝑥L ≤ 𝑦U−𝑘𝑖
𝑚𝑖

≤ 𝑥U and the Euclidean distance

between (𝑦U−𝑘𝑖
𝑚𝑖

, 𝑦U) and (ℓ𝑖 , 𝑦ℓ𝑖) is less than the bandwidth 𝑏.

Consider the starting point (ℓ𝑖 , 𝑦ℓ𝑖) that is in the region III and

the region VI. The line segment from this starting point can possibly

intersect the lower boundary (e.g., the purple dashed line segment

or the pink dashed line segment in Figure 9) with the intersection

point (𝑦L−𝑘𝑖𝑚𝑖
, 𝑦L) if 𝑥L ≤ 𝑦L−𝑘𝑖

𝑚𝑖
≤ 𝑥U and the Euclidean distance

between (𝑦L−𝑘𝑖𝑚𝑖
, 𝑦L) and (ℓ𝑖 , 𝑦ℓ𝑖) is less than the bandwidth 𝑏.

Consider the starting point (ℓ𝑖 , 𝑦ℓ𝑖) that is in the region V. The

intersection point is the same as the starting point (ℓ𝑖 , 𝑦ℓ𝑖).
Consider the starting point (ℓ𝑖 , 𝑦ℓ𝑖) that is in the region VII. The

line segment never intersects the extended region (i.e., no intersec-

tion point) as the x-coordinate of the line segment 𝑙𝑖 must fulfill

ℓ𝑖 ≤ 𝑥 ≤ 𝑢𝑖 (cf. Definition 1).

After we have found the intersection point (that is closest to

(ℓ𝑖 , 𝑦ℓ𝑖)), we then illustrate how to aggregate the length for each

grid that is intersected by this line segment 𝑙𝑖 (cf. Figure 8). Observe

from Figure 10 that there are five possible cases for the line segment

to intersect the boundaries of this grid, which are (1) intersecting

the upper boundary, (2) intersecting the upper right corner, (3)

intersecting the right boundary, (4) intersecting the lower right

corner, and (5) intersecting the lower boundary. By substituting

the correct equation of the boundary (e.g., 𝑦 = 𝑦𝐿 + (𝑣 + 1)𝛿𝑦)
into the equation of the line segment 𝑦 = 𝑚𝑖𝑥 + 𝑘𝑖 , we can find

the intersection point (e.g., (1)) in 𝑂 (1) time. However, not all line

segments can be long enough to intersect the boundaries (e.g., the

green dashed line in Figure 10). In this case, the length between

the “intersection point” (i.e., green dashed circle) and the initial

intersection point (𝑥I , 𝑦I) must be larger than the length between

the endpoint (𝑢𝑖 , 𝑦𝑢𝑖) and (𝑥I , 𝑦I), which can also be computed

in 𝑂 (1) time. Once we have the new intersection point (e.g., blue

dashed circle) or the end point (𝑢𝑖 , 𝑦𝑢𝑖) (e.g., green point), we can

use 𝑂 (1) time to aggregate the distance for this grid. This process

iteratively moves to (and aggregate the distance for) the next grid

(e.g., the upper grid for (1)) with the new intersection point until

it reaches the rightmost boundary (i.e., 𝑥 = 𝑥U in Figure 9), the

uppermost boundary (i.e., 𝑦 = 𝑦U in Figure 9), or the lowermost

boundary (i.e., 𝑦 = 𝑦L in Figure 9), or it reaches the end point

(𝑢𝑖 , 𝑦𝑢𝑖) (e.g., the green point in Figure 10).

…

…

𝑥 = 𝑥ℒ + ℎ𝛿𝑥 𝑥 = 𝑥ℒ + (ℎ + 1)𝛿𝑥

𝑦 = 𝑦ℒ + 𝑣𝛿𝑦

𝑦 = 𝑦ℒ + (𝑣 + 1)𝛿𝑦

(𝑥𝔗, 𝑦𝔗)

…

(1) (2)

(3)

(4)(5)

…

(𝑢𝑖 , 𝑦𝑢𝑖)

Figure 10: Five possible cases (blue dashed circles) for the
next intersection point.

Here, we state in Lemma 2 that obtaining the accumulated

lengths of all grids in the extended region takes 𝑂 ((𝑋 + 𝑌)𝑛) time,

given a line segment dataset L with size 𝑛.

Lemma 2. Given a line segment dataset L = {𝑙1, 𝑙2, ..., 𝑙𝑛} with size
𝑛, the time complexity for obtaining the accumulated lengths of all
grids in the extended region is 𝑂 ((𝑋 + 𝑌)𝑛).

4589

Proof. In this proof, we aim to show that obtaining the accu-

mulated lengths of all grids for only a single line segment 𝑙𝑖 takes

𝑂 (𝑋 +𝑌) time (i.e.,𝑂 ((𝑋 +𝑌)𝑛) time for𝑛 line segments). Moreover,

we also assume that 𝑙𝑖 has the slope𝑚𝑖 > 0 (i.e., the case (4) and

case (5) never happen in Figure 10). However, we can easily extend

this proof for the line segment 𝑙𝑖 with𝑚𝑖 ≤ 0.

Observe from Figure 10 that the line segment 𝑙𝑖 with 𝑚𝑖 > 0

can possibly intersect three boundaries, i.e., the upper boundary

(case (1)), the upper-right corner (case (2)), and the right boundary

(case (3)), which indicates that the next intersection point is in the

upper grid (i.e., move one grid up in the𝑦-axis), the upper right grid

(i.e., move one grid right in the 𝑥-axis and move one grid up in the

𝑦-axis), and the right grid (i.e., move one grid right in the 𝑥-axis),

respectively. Therefore, this process follows these three cases to

aggregate the distance for the next grid during the iteration. Since

there are at most 𝑂 (𝑋) grids and 𝑂 (𝑌) grids in the 𝑥-axis and the

𝑦-axis, respectively (cf. Lemma 1), finding the accumlated lengths

of all grids for a single line segment takes𝑂 (𝑋 +𝑌) time. Therefore,

the time complexity for using 𝑛 line segments is 𝑂 ((𝑋 + 𝑌)𝑛). □

Step 3: Once we have obtained the grid structure𝐺 , where𝐺 [𝛼, 𝛽]
denotes the accumulated length for the grid in which the corre-

sponding pixel has the coordinates (𝑥L + (𝛼 − 0.5)𝛿𝑥 , 𝑦L + (𝛽 −
0.5)𝛿𝑦) (1 ≤ 𝛼 ≤ 𝑋 and 1 ≤ 𝛽 ≤ 𝑌), in step 2 (cf. Figure 11a), we can

construct the prefix-sum grid structure 𝑃𝐺 (cf. Figure 11b), based on

the concept of prefix-sum array [44], where 𝑃𝐺 [𝛼∗, 𝛽∗] represents
the sum of all values in the grid structure 𝐺 with 1 ≤ 𝛼 ≤ 𝛼∗ and
1 ≤ 𝛽 ≤ 𝛽∗ (e.g., the value 24.8 in the light blue grid of Figure 11b

denotes the sum of all values (i.e., 5+ 5+ 5+ 9.8) in the red rectangle

of Figure 11a), which is stated in Equation 8.

𝑃𝐺 [𝛼∗, 𝛽∗] =
𝛼∗∑︁
𝛼=1

𝛽∗∑︁
𝛽=1

𝐺 [𝛼, 𝛽] (8)

0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0

00

5 10 24.8

5 10

24.8 24.8 24.8 27.5

24.8 25.4 31.2 33.9

5 10 15 24.8 24.8 27.9 31.5 37.3 40

17.3 32.1 33.7 37.5 46.9 49.6

11.5 20.2 29.4 39.2 40.8 44.6 48.2 54 56.7

24.8

22.311.5

15

24.815

41.1

(b) Prefix-sum grid structure

(based on length-aggregation)

5 55 9.8

2.9 4.2

0.86.5 1.6 0.7

3.1 3

0.6

2.7

5.8 24.8

(a) Grid structure with the accumulated

 length for each grid

Figure 11: Build the indexing structure, called LARGE, which
is the prefix-sum grid structure, for the extended region in
Figure 8.

With this prefix-sum grid structure 𝑃𝐺 , we can compute the

aggregation of all lengths in any rectangular region of grids in 𝐺 ,

𝛼𝐿 ≤ 𝛼 ≤ 𝛼𝑈 and 𝛽𝐿 ≤ 𝛽 ≤ 𝛽𝑈 , by accessing at most four grids

in the prefix-sum grid structure. Using Figure 11a as an example,

the aggregation of all lengths in the blue rectangle is 9, which

can be computed based on four green grids in Figure 11b (i.e.,

41.1 − 24.8 − 22.3 + 15).

In Lemma 3, we state that constructing the prefix-sum grid struc-

ture 𝑃𝐺 and obtaining the aggregation of all lengths in any rectan-

gular region of grids in 𝐺 take 𝑂 (𝑋𝑌) time and 𝑂 (1) time, respec-

tively, after we have obtained the grid structure𝐺 from step 2. This

conclusion can be easily extended from [44], which is omitted in

this paper. More details about the prefix-sum grid structure 𝑃𝐺 are

available in Section I of the supplementary document [25] of this

paper.

Lemma 3. Given an extended region and its grid structure 𝐺 , the
time complexities for constructing the prefix-sum grid structure 𝑃𝐺
and obtaining the aggregation of all lengths in any rectangular region
of grids in 𝐺 are 𝑂 (𝑋𝑌) and 𝑂 (1), respectively.
Time and space complexities of LARGE: In order to construct

the indexing structure, LARGE, we need to obtain the extended

region (i.e., step 1), which takes 𝑂 (𝑋𝑌) time (cf. Lemma 1), obtain

the accumulated lengths of all grids in the extended region (i.e.,

step 2), which takes𝑂 ((𝑋 +𝑌)𝑛) time (cf. Lemma 2), and construct

the prefix-sum grid structure (i.e., step 3), which takes 𝑂 (𝑋𝑌) time

(cf. Lemma 3). As such, we state that the time complexity for con-

structing LARGE is 𝑂 ((𝑋 + 𝑌)𝑛 +𝑋𝑌) time (cf. Theorem 1), which

is much faster than the time complexity for computing LDV (with

𝑂 (𝑋𝑌𝑛) time).

Theorem 1. Given a line segment dataset L = {𝑙1, 𝑙2, ..., 𝑙𝑛} with
size 𝑛 and a resolution size𝑋 ×𝑌 , the time complexity for constructing
LARGE is 𝑂 ((𝑋 + 𝑌)𝑛 + 𝑋𝑌).

Note that computing LDV needs to access 𝑋𝑌 pixels and 𝑛 line

segments. Therefore, every algorithm takes at least𝑂 (𝑋𝑌 +𝑛) space.
Since obtaining the extended region and constructing the prefix-

sum grid structure only take 𝑂 (𝑋𝑌) additional space, the space

complexity of LARGE remains in 𝑂 (𝑋𝑌 + 𝑛) (cf. Theorem 2).

Theorem 2. Given a line segment dataset L = {𝑙1, 𝑙2, ..., 𝑙𝑛} with
size𝑛 and a resolution size𝑋×𝑌 , the space complexity for constructing
LARGE is 𝑂 (𝑋𝑌 + 𝑛).

3.3 Square-shaped Lower and Upper Bound
Functions

After we have obtained the indexing structure, LARGE, we aim

to efficiently compute the lower and upper bound functions of

L(q) (cf. Equation 4) for all pixels. Observe from Figure 12a that

those green grids, which form the square-shaped region, are fully

covered by the search region (i.e., black dashed circle). As such,

the total length values that are assigned for all these green grids

𝐿𝐵□ (q) can contribute toL(q) (i.e., the red pixel q). Hence, we have
L(q) ≥ 𝐿𝐵□ (q). On the other hand, the pink square-shaped region

can fully cover the dashed circle (cf. Figure 12b). Therefore, the

total length values of all these pink grids 𝑈𝐵□ (q) must act as the

upper bound value for L(q). Therefore, we have L(q) ≤ 𝑈𝐵□ (q).
However, if we directly compute the lower bound function

𝐿𝐵□ (q) and the upper bound function 𝑈𝐵□ (q), we need to scan

all these green grids and pink grids, respectively, which can take

𝑂 (𝑋𝑌) time in the worst case for each pixel q (i.e., 𝑂 (𝑋 2𝑌 2) time

for all pixels). Recall that LARGE is the prefix-sum grid structure

(cf. Figure 11b), which can be used to obtain the aggregation of

all lengths in any rectangular region of grids with 𝑂 (1) time (cf.

Lemma 3). Therefore, we can compute 𝐿𝐵□ (q) and𝑈𝐵□ (q) in𝑂 (1)
time once LARGE has been built (cf. Theorem 3).

Theorem 3. Suppose that the indexing structure LARGE has been
built for a line segment dataset L = {𝑙1, 𝑙2, ..., 𝑙𝑛} with size 𝑛, comput-
ing the lower bound function 𝐿𝐵□ (q) and the upper bound function
𝑈𝐵□ (q) for each pixel takes 𝑂 (1) time.

4590

𝑦

𝑥

𝑦

𝑥
(a) Lower bound function (b) Upper bound function

Figure 12: Illustration of the square-shaped lower and upper
bound functions, i.e., 𝐿𝐵□ (q) and 𝑈𝐵□ (q), respectively, for
the red pixel q.

3.4 Arbitrary-shaped Lower and Upper Bound
Functions

Although the square-shaped lower and upper bound functions can

be computed in 𝑂 (1) time (cf. Theorem 3), these bound functions

may not be tight enough. Observe from Figure 12a that four grey

grids are fully covered by the dashed circle, which are omitted by

𝐿𝐵□ (q). In addition, some pink grids do not intersect the dashed

circle (e.g., those pink grids near the corners in Figure 12b), in which

their accumulated lengths are still aggregated in𝑈𝐵□ (q).
𝑦

𝑥

𝑦

𝑥
(a) Lower bound function (b) Upper bound function

Figure 13: Illustration of the arbitrary-shaped lower and up-
per bound functions, i.e., 𝐿𝐵𝑎 (q) and𝑈𝐵𝑎 (q), respectively, for
the red pixel q.

To further tighten the bound values, we propose the arbitrary-

shaped lower and upper bound functions, namely 𝐿𝐵𝑎 (q) and

𝑈𝐵𝑎 (q), respectively. In 𝐿𝐵𝑎 (q), we aim to aggregate the accu-

mulated lengths of all grids that are fully covered by the dashed

circle (cf. the orange grids in Figure 13a). In 𝑈𝐵𝑎 (q), we only ag-

gregate the accumulated lengths of those grids that partly intersect

or are fully covered by the dashed circle (cf. the yellow grids in Fig-

ure 13b). Therefore, we can ensure that L(q) ≥ 𝐿𝐵𝑎 (q) ≥ 𝐿𝐵□ (q)
and L(q) ≤ 𝑈𝐵𝑎 (q) ≤ 𝑈𝐵□ (q).

Compared with the square-shaped lower and upper bound func-

tions, both 𝐿𝐵𝑎 (q) and 𝑈𝐵𝑎 (q) are not based on the rectangular-

shaped regions. As such, we cannot use 𝑂 (1) time to obtain the

aggregate values of all grids in the orange region and the yellow

region (cf. Figures 13a and b, respectively). Instead, by regarding

each horizontal stripe (or vertical stripe) as the rectangular region

of grids, we can compute 𝐿𝐵𝑎 (q) and 𝑈𝐵𝑎 (q) (based on LARGE)

in 𝑂 (min(𝑋,𝑌)) time
2
in the worst case (cf. Theorem 4).

2
If 𝑋 ≤ 𝑌 , we adopt the vertical stripe. Otherwise, we adopt the horizontal stripe. By

using this strategy, we can achieve this worst-case time complexity.

Theorem 4. Suppose that the indexing structure LARGE has been
built for a line segment dataset L = {𝑙1, 𝑙2, ..., 𝑙𝑛} with size 𝑛, comput-
ing the lower bound function 𝐿𝐵𝑎 (q) and the upper bound function
𝑈𝐵𝑎 (q) for each pixel takes 𝑂 (min(𝑋,𝑌)) time.

3.5 Filter and Refinement Framework
With these lower and upper bound functions (cf. Section 3.3 and

Section 3.4), we can further utilize the filter and refinement frame-

work [15, 24, 36] to boost the efficiency for generating LDV with an

𝜖-relative error guarantee (cf. Definition 3). Note that if any lower

and upper bound functions (namely 𝐿𝐵(q) and𝑈𝐵(q), respectively)
can fulfill the condition𝑈𝐵(q) ≤ (1 + 𝜖)𝐿𝐵(q), we can ensure that

any value in between 𝐿𝐵(q) and 𝑈𝐵(q) can be a valid value for

the result 𝑅(q). Hence, we can let 𝑅(q) = 𝐿𝐵 (q)+𝑈𝐵 (q)
2

. However,

if 𝑈𝐵(q) ≤ (1 + 𝜖)𝐿𝐵(q) does not hold, we need to adopt the se-

quential scan method (cf. Section 2.2) or the hierarchical indexing

framework (cf. Section 2.3) as a refinement method to compute

L(q). As a remark, since 𝐿𝐵□ (q) and𝑈𝐵□ (q) are faster (but looser)
compared with 𝐿𝐵𝑎 (q) and 𝑈𝐵𝑎 (q), respectively, our implementa-

tion first checks whether the condition is fulfilled by the (𝐿𝐵□ (q),
𝑈𝐵□ (q))-pair, and then the (𝐿𝐵𝑎 (q),𝑈𝐵𝑎 (q))-pair (if the first pair
is failure).

3.6 Tightness of Bound Functions
In this section, we further investigate the tightness of our bound

functions (cf. Section 3.3 and Section 3.4). In order to achieve a tight

lower (or upper) bound value for each pixel q, the occupied area of

a bound function (e.g., the green area in Figure 12a) should be close

to the area of the search region (e.g., the area that is covered by the

black dashed circle in Figure 12a), i.e., 𝜋𝑏2. Therefore, we use the

ratio between these two areas to measure the tightness of bound

functions.

Here, we let 𝐴𝐿𝐵□ (q) and 𝐴𝑈𝐵□ (q) be the occupied areas of the

bound functions,𝐿𝐵□ (q) and𝑈𝐵□ (q), respectively, where (based on
the

√︃
𝛿2𝑥 + 𝛿2𝑦 ≤ 2𝑏 assumption

3
and Section II of the supplementary

document [25])

𝐴𝐿𝐵□ (q) =

(
2 ×

⌊𝑏 − 1

2

√︃
𝛿2𝑥 + 𝛿2𝑦√︃

𝛿2𝑥 + 𝛿2𝑦

⌋
+ 1

)
2

𝛿𝑥𝛿𝑦 (9)

𝐴𝑈𝐵□ (q) =

(
2 ×

⌈
𝑏 − 1

2
min(𝛿𝑥 , 𝛿𝑦)

min(𝛿𝑥 , 𝛿𝑦)

⌉
+ 1

)
2

𝛿𝑥𝛿𝑦 (10)

As a remark,𝐴𝐿𝐵□ (q) ≤ 𝜋𝑏2 and𝐴𝑈𝐵□ (q) ≥ 𝜋𝑏2. We state in Theo-

rem 5 that the bound functions can be tight if this ratio

min(𝛿𝑥 ,𝛿𝑦)
𝑏

is

small. This theorem indicates that 𝐿𝐵□ (q) and𝑈𝐵□ (q) can be more

useful for supporting small pixel sizes and large bandwidth values,

which cannot be efficiently handled by state-of-the-art methods (cf.

Section 2.3).

Theorem 5. If
√︃
𝛿2𝑥 + 𝛿2𝑦 ≤ 2𝑏 and

min(𝛿𝑥 ,𝛿𝑦)
𝑏

→ 0,
𝐴𝐿𝐵□ (q)
𝜋𝑏2

and
𝐴𝑈𝐵□ (q)

𝜋𝑏2
attain the maximum value and the minimum value,

respectively.

3
Suppose that

√︃
𝛿2𝑥 + 𝛿2𝑦 > 2𝑏. The region of a pixel is larger than the search region,

which is not meaningful for the visualization. Therefore, we have the assumption√︃
𝛿2𝑥 + 𝛿2𝑦 ≤ 2𝑏 in this paper.

4591

Proof. We first consider the expression

𝐴𝐿𝐵□ (q)
𝜋𝑏2

and let 𝛿𝑦 =

𝑐𝛿𝑥 , where 𝑐 ≥ 1 (i.e., 𝛿𝑥 ≤ 𝛿𝑦). We have

𝐴𝐿𝐵□ (q)
𝜋𝑏2

=

𝑐

(
2

⌊
𝑏√

1+𝑐2𝛿𝑥
− 1

2

⌋
+ 1

)
2

𝛿2𝑥

𝜋𝑏2

≥
𝑐

(
2

(
𝑏√

1+𝑐2𝛿𝑥
− 3

2

)
+ 1

)
2

𝛿2𝑥

𝜋𝑏2

=
4𝑐

𝜋 (1 + 𝑐2)
− 8𝑐

𝜋
√
1 + 𝑐2

(𝛿𝑥
𝑏

)
+ 4𝑐

(𝛿𝑥
𝑏

)
2

Hence, the lower bound of

𝐴𝐿𝐵□ (q)
𝜋𝑏2

can be represented by the qua-

dratic equation in terms of
𝛿𝑥
𝑏
. Since we have

𝛿𝑥
𝑏

> 0 (both 𝛿𝑥 > 0

and 𝑏 > 0) and
𝛿𝑥
𝑏

≤ 2√
1+𝑐2

(based on

√︃
𝛿2𝑥 + 𝛿2𝑦 ≤ 2𝑏 and 𝛿𝑦 = 𝑐𝛿𝑥),

we can conclude that the lower bound of

𝐴𝐿𝐵□ (q)
𝜋𝑏2

attains the max-

imum value
4𝑐

𝜋 (1+𝑐2) when

min(𝛿𝑥 ,𝛿𝑦)
𝑏

=
𝛿𝑥
𝑏

tends to 0. Moreover,

we also have

𝐴𝐿𝐵□ (q)
𝜋𝑏2

≤
𝑐

(
2

(
𝑏√

1+𝑐2𝛿𝑥
− 1

2

)
+ 1

)
2

𝛿2𝑥

𝜋𝑏2
=

4𝑐

𝜋 (1 + 𝑐2)

which indicates that the upper bound of

𝐴𝐿𝐵□ (q)
𝜋𝑏2

is at most
4𝑐

𝜋 (1+𝑐2)
no matter which

𝛿𝑥
𝑏

we use. As such, based on the squeeze theo-

rem [8], we can conclude that

𝐴𝐿𝐵□ (q)
𝜋𝑏2

can also attain the maximum

value when

min(𝛿𝑥 ,𝛿𝑦)
𝑏

=
𝛿𝑥
𝑏

tends to 0.

Then, we consider the expression

𝐴𝑈𝐵□ (q)
𝜋𝑏2

and let 𝛿𝑦 = 𝑐𝛿𝑥 ,

where 𝑐 ≥ 1 (i.e., 𝛿𝑥 ≤ 𝛿𝑦). We have

𝐴𝑈𝐵□ (q)
𝜋𝑏2

=

𝑐

(
2

⌈
𝑏
𝛿𝑥

− 1

2

⌉
+ 1

)
2

𝛿2𝑥

𝜋𝑏2

≤
𝑐

(
2

(
𝑏
𝛿𝑥

+ 1

2

)
+ 1

)
2

𝛿2𝑥

𝜋𝑏2
=

4𝑐

𝜋

(
1 + 𝛿𝑥

𝑏

)
2

Therefore, if
𝛿𝑥
𝑏

tends to 0, the upper bound of

𝐴𝑈𝐵□ (q)
𝜋𝑏2

attains the

minimum value
4𝑐
𝜋 . Furthermore, we also have

𝐴𝑈𝐵□ (q)
𝜋𝑏2

≥
𝑐

(
2

(
𝑏
𝛿𝑥

− 1

2

)
+ 1

)
2

𝛿2𝑥

𝜋𝑏2
=

4𝑐

𝜋

Therefore, the lower bound of

𝐴𝑈𝐵□ (q)
𝜋𝑏2

is
4𝑐
𝜋 regardless of which

𝛿𝑥
𝑏

we choose. By the squeeze theorem [8], we can conclude that

𝐴𝑈𝐵□ (q)
𝜋𝑏2

can also attain the minimum value if
𝛿𝑥
𝑏

tends to 0.

By adopting the same concept, we can also have the same con-

clusion for the case 𝛿𝑥 = 𝑐𝛿𝑦 , where 𝑐 ≥ 1 (i.e., 𝛿𝑦 ≤ 𝛿𝑥). □
Unlike 𝐴𝐿𝐵□ (q) (cf. Equation 9) and 𝐴𝑈𝐵□ (q) (cf. Equation 10),

there is no closed-form expression for the occupied areas of 𝐿𝐵𝑎 (q)
and𝑈𝐵𝑎 (q), i.e., 𝐴𝐿𝐵𝑎 (q) and 𝐴𝑈𝐵𝑎 (q) , respectively. However, sup-
pose that the pixel size, 𝛿𝑥 × 𝛿𝑦 , and the bandwidth parameter 𝑏

are known, we can calculate the corresponding values of 𝐴𝐿𝐵𝑎 (q)
and 𝐴𝑈𝐵𝑎 (q) (based on counting the total areas of those orange

and yellow grids, respectively, in Figure 13). Therefore, in order

to analyze the tightness of the arbitrary-shaped bound functions,

we first set the parameters to be 𝛿𝑥 = 𝛿𝑦 = 𝛿 (i.e., adopt the com-

monly used square-shaped pixel) and then plot the values of

𝐴𝐿𝐵𝑎 (q)
𝜋𝑏2

and

𝐴𝑈𝐵𝑎 (q)
𝜋𝑏2

with respect to different ratios
𝛿
𝑏
(cf. Figure 14). Ob-

serve that the tightness of these bound functions (i.e.,

𝐴𝐿𝐵𝑎 (q)
𝜋𝑏2

and

𝐴𝑈𝐵𝑎 (q)
𝜋𝑏2

) tend to 1 (i.e., the occupied areas of 𝐿𝐵𝑎 (q) and 𝑈𝐵𝑎 (q)
are close to the search region) if we adopt the small ratio

𝛿
𝑏
, which

indicates that the bound functions are tight for small pixel size

(i.e., small 𝛿 = 𝛿𝑥 = 𝛿𝑦) or large bandwidth value (i.e., large 𝑏) in

practice.

0 0.5 1 1.5
0

1

2

3

4

5

6

F
u
n
ct

io
n
 v

a
lu

e

Figure 14: Tightness of the arbitrary-shaped bound functions,
𝐿𝐵𝑎 (q) and𝑈𝐵𝑎 (q), varying the ratio 𝛿

𝑏
(where 𝛿𝑥 = 𝛿𝑦 = 𝛿).

4 EXPERIMENTAL EVALUATION
In this section, we first discuss the experimental settings in Sec-

tion 4.1. Then, we test the efficiency of all methods for generating

LDV in Section 4.2. Next, we measure the space consumption of all

methods in Section 4.3. After that, we compare the practical accu-

racy of exact and approximation methods in Section 4.4. Then, we

discuss the effectiveness of bound functions in Section 4.5. Lastly,

we conduct a case study in the Los Angeles bicycle mobility dataset

for testing the visualization quality of the exact and approximation

methods in Section 4.6. Some additional experiments can also be

found in Section III of the supplementary document [25].

4.1 Experimental Settings
We adopt four large-scale trajectory datasets for testing, where we

regard two consecutive trajectory points as a line segment for each

dataset (which follows the same setting as [75]). Table 1 shows the

details of all datasets.

Table 1: Datasets.
Dataset 𝑛 Category Ref.

Los Angeles 402,171 Bicycle mobility [4]

San Francisco 402,602 Taxi mobility [6]

Chicago 2,237,135 Taxi mobility [7]

Beijing 14,263,241 Human mobility [3]

In our experiments, we compare our method, LARGE, with

four baseline methods, namely SCAN, SCAN
line

, R-tree, and PMR

quadtree, which are summarized in Table 2. SCAN is the sequen-

tial scan method for computing the line density function of each

pixel (cf. Section 2.2). SCAN
line

is the variant of SCAN, which first

finds all pixels that are within the bandwidth 𝑏 from each line seg-

ment and then updates the density values for those pixels. Both

R-tree [54]
4
and PMR quadtree [45–47] are the representative meth-

ods for indexing line segment data so that they can also be extended

4
Since all line segments are available in advance (i.e., static data), we adopt the advanced

bulk loading technique [54] to construct a compact R-tree for each dataset.

4592

to compute the line density function (cf. Section 2.3). We imple-

mented all these methods with C++ and conducted experiments

on an Intel i7 2.9GHz PC with 32GB memory. In this paper, we use

the response time (sec) and the memory space (MB) to measure

the time efficiency and the space efficiency of each method, respec-

tively, and only report the response time that is smaller than one

day (i.e., 86,400 sec). Moreover, we also adopt the mean squared

error (MSE) as a metric, which indicates the average line density

value deviation of each pixel, to measure the practical accuracy

of our approximation method, LARGE, compared with any exact

method (e.g., R-tree). As a remark, we use R-tree as the refinement

method of LARGE (cf. Section 3.5) in our experiment.

Table 2: All methods.
Method SCAN SCAN

line
R-tree PMR quadtree LARGE

Ref. [1, 5] [1, 5] [54] [45–47] Section 3

4.2 Efficiency of All Methods
In this section, we conduct the following four experiments to mea-

sure the response time of each method for generating LDV (cf.

Definition 2), which are (1) varying the resolution size, (2) varying

the bandwidth parameter 𝑏, (3) varying the dataset size, and (4)

varying the relative error 𝜖 (cf. Definition 3). By default, we set the

resolution size, the bandwidth parameter, and the relative error to

be 320 × 240, 1000m, and 0.1, respectively.

Varying the resolution size. In this experiment, we test the ef-

ficiency of all methods with respect to different resolution sizes,

namely 320 × 240, 480 × 360, 720 × 540, and 1080 × 810. Figure 15

shows the results of all methods. Recall that the larger the reso-

lution size (i.e., 𝛿𝑥 and 𝛿𝑦 are smaller), the tighter the lower and

upper bound functions of LARGE (cf. Theorem 5 and Figure 14),

which leads to the higher filtering power for generating LDV (cf.

Section 3.5). Therefore, the response time of LARGE is not very

sensitive to the resolution size compared with that of existing meth-

ods (which are proportional to the resolution size). Since the time

complexity of constructing LARGE (cf. Theorem 1) and computing

the bound functions (cf. Theorem 3 and Theorem 4) are also small,

our method can achieve speedups of 4.87x to 288.25x compared

with the existing methods.

Varying the bandwidth parameter 𝑏. Here, we test the efficiency

of all methods with respect to different bandwidth parameters

𝑏, which are 500m, 1000m, 1500m, 2000m, and 2500m. Observe

from Figure 16 that the response time of SCAN is not sensitive to

the bandwidth parameter 𝑏 since this method does not adopt any

filtering technique. Moreover, all tree-based indexing methods (cf.

Section 2.3), including R-tree and PMR quadtree, take long response

time if the bandwidth parameter 𝑏 is large. The main reason is

that the search range of each pixel (e.g., the black dashed circle in

Figure 5) is large, which can cover more line segments and nodes in

a tree index, given a large bandwidth value 𝑏. Similarly, the variant

of the sequential scan method, SCAN
line

, also takes long response

time with the large bandwidth parameter𝑏 since more pixels should

be accessed for each line segment. In contrast, since our lower and

upper bound functions are tight with a large bandwidth value 𝑏 (cf.

Theorem 5 and Figure 14), the response time of our method, LARGE,

is not proportional to the bandwidth value 𝑏. As a remark, LARGE

can even achieve small response time with large bandwidth values

for the Los Angeles, San Francisco, and Chicago datasets.
5
Due to

the lower time complexity of constructing LARGE (cf. Theorem 1)

and computing bound functions (cf. Theorem 3 and Theorem 4),

our method can achieve speedups of 2.35x to 291.8x for generating

LDV compared with all existing methods.

Varying the dataset size. We proceed to investigate how the

dataset size affects the response time of each method. To conduct

this experiment, we first sample those line segments in each dataset

with four sampling ratios, which are 25%, 50%, 75%, and 100% (no

sampling). Then, we measure the response time of all methods with

respect to each reduced dataset. Since all methods need to access

more line segments given a larger sampling ratio, the response time

of all methods is proportional to this parameter (cf. Figure 17). Note

that our method, LARGE, achieves speedups of 4.72x to 55.93x over

the state-of-the-art methods for generating LDV.

Varying the relative error 𝜖 . In this experiment, we further test

how the relative error 𝜖 affects the response time of each method

for supporting LDV (by varying 𝜖 from 0.05 to 0.2). Figure 18 shows

the results of all methods. Since SCAN, SCAN
line

, R-tree, and PMR

quadtree are the exact methods for generating LDV, the response

time of all these methods is not sensitive to this parameter. Note that

our methods can achieve speedups of 3.13x to 105.84x compared

with the state-of-the-art methods no matter which 𝜖 we choose.

4.3 Space Consumption of All Methods
In this section, we further investigate the space consumption of

all methods for generating LDV by conducting the following two

experiments, which are (1) varying the dataset size and (2) varying

the bandwidth parameter 𝑏. By default, we set the resolution size,

the bandwidth parameter, and the relative error to be 320 × 240,

1000m, and 0.1, respectively.

Varying the dataset size. Here, we examine how the dataset size

affects the memory space consumption of each method. To conduct

this experiment, we first sample each dataset using four sampling

ratios, which are 25%, 50%, 75%, and 100% (no sampling), and then

measure the memory space consumption of each method. Figure 19

shows the results of all methods. Observe that the larger the dataset

size, the higher thememory space consumption of eachmethod. The

main reason is that all methods need to access more data points with

larger dataset sizes. Note that R-tree, PMR quadtree, and LARGE

(using R-tree as the refinement method) need to construct tree-

based indexing structures, which consume larger memory space

compared with SCAN and SCAN
line

. Since our method, LARGE,

still retains the small space complexity (cf. Theorem 2), LARGE

does not incur significant memory space overhead compared with

the state-of-the-art methods, R-tree and PMR quadtree.

Varying the bandwidth parameter 𝑏. We proceed to investigate

how the bandwidth parameter𝑏 affects the memory space consump-

tion of each method, by choosing five bandwidth values, namely

500m, 1000m, 1500m, 2000m, and 2500m. Figure 20 shows the re-

sults of all methods. Since the sequential scan methods, SCAN and

5
Theoretically, LARGE needs to access more line segments in the refinement phase

for each pixel q (i.e.,𝑈𝐵 (q) ≤ (1 + 𝜖)𝐿𝐵 (q) does not hold in the filter phase.) with

a large bandwidth value 𝑏 since we adopt the R-tree in this phase. However, with the

high filtering power of bound functions for a large bandwidth value 𝑏, there must be

less pixels in the refinement phase. Therefore, the response time depends on the final

trade off between these two factors (e.g., smaller response time for the Los Angeles,

San Francisco, and Chicago datasets and higher response time for the Beijing dataset

with the larger bandwidth value 𝑏).

4593

SCAN □ SCAN
line

△ R-tree ⃝ PMR quadtree ♦ LARGE ▽

 1

 10

 100

 1000

 10000

 100000

320x240 480x360 720x540 1080x810

T
im

e
(s

ec
)

Resolution

 1

 10

 100

 1000

 10000

 100000

320x240 480x360 720x540 1080x810

T
im

e
(s

ec
)

Resolution

 1

 10

 100

 1000

 10000

 100000

320x240 480x360 720x540 1080x810

T
im

e
(s

ec
)

Resolution

 1

 10

 100

 1000

 10000

 100000

320x240 480x360 720x540 1080x810

T
im

e
(s

ec
)

Resolution

(a) Los Angeles (b) San Francisco (c) Chicago (d) Beijing

Figure 15: Response time for generating LDV, varying the resolution size.

 1

 10

 100

 1000

 10000

 100000

500 1000 1500 2000 2500

T
im

e
(s

ec
)

Bandwidth (m)

 1

 10

 100

 1000

 10000

 100000

500 1000 1500 2000 2500

T
im

e
(s

ec
)

Bandwidth (m)

 1

 10

 100

 1000

 10000

 100000

500 1000 1500 2000 2500

T
im

e
(s

ec
)

Bandwidth (m)

 1

 10

 100

 1000

 10000

500 1000 1500 2000 2500

T
im

e
(s

ec
)

Bandwidth (m)

(a) Los Angeles (b) San Francisco (c) Chicago (d) Beijing

Figure 16: Response time for generating LDV, varying the bandwidth parameter 𝑏.

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

T
im

e
(s

ec
)

Dataset size (percentage)

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

T
im

e
(s

ec
)

Dataset size (percentage)

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

T
im

e
(s

ec
)

Dataset size (percentage)

 1

 10

 100

 1000

 10000

25 50 75 100

T
im

e
(s

ec
)

Dataset size (percentage)

(a) Los Angeles (b) San Francisco (c) Chicago (d) Beijing

Figure 17: Response time for generating LDV, varying the dataset size.

 1

 10

 100

 1000

 10000

 100000

0.05 0.1 0.15 0.2

T
im

e
(s

ec
)

Relative error

 1

 10

 100

 1000

 10000

 100000

0.05 0.1 0.15 0.2

T
im

e
(s

ec
)

Relative error

 1

 10

 100

 1000

 10000

 100000

0.05 0.1 0.15 0.2

T
im

e
(s

ec
)

Relative error

 1

 10

 100

 1000

 10000

0.05 0.1 0.15 0.2

T
im

e
(s

ec
)

Relative error

(a) Los Angeles (b) San Francisco (c) Chicago (d) Beijing

Figure 18: Response time for generating LDV, varying the relative error 𝜖.

 1

 10

 100

 1000

25 50 75 100

M
em

or
y

sp
ac

e
(M

B
)

Dataset size (percentage)

 1

 10

 100

 1000

25 50 75 100

M
em

or
y

sp
ac

e
(M

B
)

Dataset size (percentage)

 1

 10

 100

 1000

 10000

25 50 75 100

M
em

or
y

sp
ac

e
(M

B
)

Dataset size (percentage)

 1

 10

 100

 1000

 10000

 100000

25 50 75 100

M
em

or
y

sp
ac

e
(M

B
)

Dataset size (percentage)

(a) Los Angeles (b) San Francisco (c) Chicago (d) Beijing

Figure 19: Memory space consumption (MB) for generating LDV, varying the dataset size.

 1

 10

 100

 1000

500 1000 1500 2000 2500

M
em

or
y

sp
ac

e
(M

B
)

Bandwidth (m)

 1

 10

 100

 1000

500 1000 1500 2000 2500

M
em

or
y

sp
ac

e
(M

B
)

Bandwidth (m)

 1

 10

 100

 1000

 10000

500 1000 1500 2000 2500

M
em

or
y

sp
ac

e
(M

B
)

Bandwidth (m)

 1

 10

 100

 1000

 10000

 100000

500 1000 1500 2000 2500

M
em

or
y

sp
ac

e
(M

B
)

Bandwidth (m)

(a) Los Angeles (b) San Francisco (c) Chicago (d) Beijing

Figure 20: Memory space consumption (MB) for generating LDV, varying the bandwidth parameter 𝑏.

4594

Exact × Approximation ▽

 0

 0.0005

 0.001

 0.0015

 0.002

0.05 0.1 0.15 0.2

M
ea

n
sq

ua
re

 e
rr

or

Relative error

 0

 1x10-5

 2x10-5

 3x10-5

 4x10-5

0.05 0.1 0.15 0.2

M
ea

n
sq

ua
re

 e
rr

or

Relative error

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.05 0.1 0.15 0.2

M
ea

n
sq

ua
re

 e
rr

or

Relative error

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.05 0.1 0.15 0.2

M
ea

n
sq

ua
re

 e
rr

or

Relative error

(a) Los Angeles (b) San Francisco (c) Chicago (d) Beijing

Figure 21: Accuracy (mean squared error) for generating LDV, varying the relative error 𝜖.

 0

 20

 40

 60

 80

 100

0.05 0.1 0.15 0.2

P
er

ce
nt

ag
e

(%
)

Relative error

Square
Arbitrary

Refinement

 0

 20

 40

 60

 80

 100

0.05 0.1 0.15 0.2

P
er

ce
nt

ag
e

(%
)

Relative error

Square
Arbitrary

Refinement

 0

 20

 40

 60

 80

 100

0.05 0.1 0.15 0.2

P
er

ce
nt

ag
e

(%
)

Relative error

Square
Arbitrary

Refinement

 0

 20

 40

 60

 80

 100

0.05 0.1 0.15 0.2

P
er

ce
nt

ag
e

(%
)

Relative error

Square
Arbitrary

Refinement

(a) Los Angeles (b) San Francisco (c) Chicago (d) Beijing

Figure 22: Percentages of pixels that (1) can be handled by the square-shaped bound functions (Square), (2) can be handled by
the arbitrary-shaped bound functions (Arbitrary) and (3) cannot be handled by our bound functions (Refinement).

SCAN
line

, and the construction of all tree-based indexing struc-

tures, R-tree and PMR quadtree, are independent to the bandwidth

parameter, all existing methods, SCAN, SCAN
line

, R-tree, and PMR

quadtree, are not sensitive to this parameter. Recall that the space

consumption of our method, LARGE, should be proportional to the

bandwidth parameter 𝑏, due to a larger extended region in Figure 7.

However, the space consumption of our method, LARGE, is still

not sensitive to this parameter since the number of line segments 𝑛

is much larger than the size of the extended region of each dataset

(which is the main bottleneck of the space complexity 𝑂 (𝑋𝑌 + 𝑛)
in Theorem 2).

4.4 Accuracy of All Methods
In this section, we proceed to investigate how the relative error 𝜖

affects the practical accuracy (i.e., the mean squared error) of exact

and approximation methods, by using four values of 𝜖 , which are

0.05, 0.1, 0.15, and 0.2. Observe from Figure 21 that the larger the

relative error 𝜖 , the larger the mean squared error. Note that our

approximation method, i.e., LARGE, retains the small mean squared

error (which ranges from 7.95 × 10
−6

to 2.93) compared with any

exact method (with zero error). Therefore, the results indicate that

our approximation method can achieve accurate performance for

generating LDV.

4.5 Effectiveness of Bound Functions
In this section, we further investigate the effectiveness (i.e., the

filtering power) of our bound functions in the filter and refinement

framework (cf. Section 3.5) by choosing four values of 𝜖 , which are

0.05, 0.1, 0.15, and 0.2. Figure 22 shows the percentages of pixels

that (1) can be handled by the square-shaped bound functions, (2)

can be handled by the arbitrary-shaped bound functions and (3)

cannot be handled by our bound functions (i.e., need to undergo

the refinement stage.). Observe that the larger the relative error 𝜖 ,

the higher the percentage of pixels (i.e., filtering power) that can

be handled by our bound functions (especially for arbitrary-shaped

bound functions). In addition, our bound functions can handle

25.55% to 95.02% pixels in these datasets. Therefore, LARGE can

significantly improve the efficiency for generating LDV compared

with exact methods.

4.6 Case Study
In this section, we conduct a case study for testing the visualiza-

tion quality of the exact (i.e., SCAN, SCAN
line

, R-tree, and PMR

quadtree) and approximation (i.e., LARGE) methods using the Los

Angeles bicycle mobility dataset. By default, we set the resolution

size, the bandwidth parameter 𝑏, and the relative error 𝜖 to be

320 × 240, 1000m, and 0.1, respectively, for conducting this case

study. Figure 23 shows the LDVs of using the exact and approxi-

mation methods. Observe that these two plots also reveal that the

bicycle flows are mainly between the west part of Los Angeles (i.e.,

Santa Monica) and the east part of Los Angeles (i.e., Downtown Los

Angeles). In addition, we also note that our approximation method,

i.e., LARGE, (cf. Figure 23b) provides the similar visualization com-

pared with the one of the exact method (cf. Figure 23a), which

indicates that LARGE achieves significant efficiency improvement,

without degrading the visualization quality in practice.

(a) Exact (b) Approximation

Figure 23: Generate LDVs using the exact (i.e., SCAN,
SCANline, R-tree, and PMR quadtree) and approximation
(i.e., LARGE) methods.

4595

5 RELATEDWORK
In this section, we review five camps of research studies, namely (1)

efficient algorithms for spatial join and line-segment-based queries,

(2) efficient algorithms for kernel density visualization, (3) efficient

algorithms for moving object queries, (4) tree-based indexing struc-

tures, and (5) grid-based indexing structures, which are mostly

related to this work.

Efficient algorithms for spatial join and line-segment-based
queries. In the first camp, many researchers in the database [32, 37,

42, 43, 45–49, 51, 68, 79, 96], computational geometry [13, 27, 29, 65],

and theoretical computer science [59] communities have devel-

oped efficient algorithms for supporting different types of spatial

join queries. Among most of these queries, line-segment-based

queries [13, 27, 29, 42, 45–49, 51, 59, 65] (e.g., finding the nearest

line segment from a query point in a line segment database [45, 46])

are one of the representative classes. However, unlike our prob-

lem (cf. Definition 2), all these research studies mainly focus on

relatively simple line-segment-based queries, which do not need

to compute the more complex density function (cf. Equation 4).

Therefore, most of these methods (and their theoretical results)

cannot be easily extended for solving our problem.

Efficient algorithms for kernel density visualization. In the

second camp, many researchers [15–21, 23, 36, 71–73, 99–101] have

proposed efficient algorithms for kernel density visualization (KDV),

which is another important density visualization tool that is based

on location data points. However, since LDV (cf. Definition 2) is

based on line segments (rather than location data points), all these

efficient algorithms (and their theoretical results) in KDV cannot

be extended for generating LDV.

Efficient algorithms formoving object queries. In the third camp,

a plethora of research studies [52, 53, 57, 67, 70, 87, 88, 91] have

been proposed for solving different types of queries that are related

to moving objects (or trajectories), which can also be regarded as a

set of line segments in some research studies (e.g., [67, 70, 87, 88]).

However, unlike our work, none of these research studies focuses

on computing the line density function (cf. Equation 4), which

cannot be used for improving the efficiency of generating LDV.

Tree-based indexing structures. In the fourth camp, many tree-

based indexing structures [78, 97] have been proposed to boost

the efficiency of spatial/multidimensional similarity search queries.

To the best of our knowledge, using the indexing framework with

the lower bound that is based on minimum bounding rectangles

(cf. Section 2.3) is also the state-of-the-art approach for solving

our problem. However, since generating LDV is based on line seg-

ments, many point-based indexing structures (e.g., kd-tree [12, 97],

ball-tree [63, 78], and metric-tree [28, 78]) cannot be easily ex-

tended for solving this problem. Among most of these indexing

structures, rectangle-based indexing structures (e.g., R-tree [40, 54],

R
+
-tree [33], and R*-tree [10]) and PMR quadtree [45–47] are the

most representative ones for generating LDV. However, all these

solutions cannot efficiently handle line segments that are close to a

pixel (cf. Figure 6), which provide inferior efficiency performance

compared with LARGE (cf. Section 4.2).

Grid-based indexing structures. In the fifth camp, many re-

searchers [14, 30, 34, 35, 53, 55, 57, 76, 81, 82, 88, 89, 98] have

adopted grid-based indexing structures to handle different types

of query processing problems (e.g., k-nearest neighbor search and

range search problems). However, most of these research stud-

ies [14, 34, 35, 55, 57, 81, 82, 89, 98] mainly focus on location point

data rather than line-segment data, which cannot be extended for

solving the LDV problem (cf. Definition 2). Although some research

studies [30, 53, 76, 88, 98] also build grid-based indexing structures

for line-segment data in order to support various types of spatial

queries (e.g., k-nearest neighbor search), all of them do not consider

the complex line density function (cf. Equation 4). Therefore, these

research studies cannot be extended for solving the LDV problem.

6 CONCLUSION
In this paper, we study line density visualization (LDV), which has

been widely used in different applications, including mobility anal-

ysis, traffic flow analysis, and crime pattern analysis, and has been

extensively supported by many commonly used software platforms,

including QGIS and ArcGIS. However, LDV is a computationally

expensive operation, which cannot be scalable to handle large-scale

line segment datasets or high resolution sizes. To overcome the

efficiency issues of this operation, we first propose the indexing

structure, called length-aggregation-based grid structure (LARGE).

Then, based on LARGE, we further develop two types of efficient

bound functions, namely (1) square-shaped lower and upper bound

functions and (2) arbitrary-shaped lower and upper bound func-

tions, which can filter a large portion of unnecessary computations

for approximately computing LDV with an 𝜖-relative error guaran-

tee. Theoretically, we also show that our bound functions can be

tight if the ratio between the pixel size and the bandwidth value is

small, indicating that our solution, LARGE, can be more scalable

to compute LDV with high resolution sizes (i.e., small pixel sizes)

and large bandwidth values compared with the existing solutions

(e.g., R-tree and PMR quadtree). In practice, our experiment results

on four large-scale line segment datasets also show that LARGE

yields up to 291.8x speedups over the state-of-the-art exact solu-

tions, without degrading the visualization quality and incurring the

significant space overhead. Furthermore, we have also developed

the new plugin [2] (based on LARGE) for QGIS users to efficiently

generate LDV in a line segment dataset.

In the future, we plan to investigate the parallel, distributed,

and hardware-based approaches to further boost the efficiency of

LARGE in order to achieve real-time performance for generating

LDV. Moreover, we will investigate how to develop another fast

and accurate line density visualization tool for domain experts.

Furthermore, we will develop efficient solutions for other types

of geospatial analysis tools [22], including Moran’s I [58], Geary’s

c [58], inverse distance weighting [56], and Kriging [92].

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program

of China 2023YFC3321300, the Natural Science Foundation of

China under grants 62202401, 62372308, and 62472116, the Nat-

ural Science Foundation of Guangdong Province of China un-

der grants 2023A1515011619 and 2023A1515030273, the Science

and Technology Development Fund Macau SAR (0003/2023/RIC,

0052/2023/RIA1, 0031/2022/A, 001/2024/SKL for SKL-IOTSC), the

Research Grant of University of Macau (MYRG2022-00252-FST),

Shenzhen-Hong Kong-Macau Science and Technology Program

Category C (SGDX20230821095159012), and Wuyi University Hong

Kong and Macau joint Research Fund (2021WGALH14).

4596

REFERENCES
[1] [n. d.]. ArcGIS. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-

analyst/how-line-density-works.htm.

[2] [n. d.]. Fast Line Density Analysis. https://plugins.qgis.org/plugins/fast_line_

density_analysis/.

[3] [n. d.]. GeoLife GPS Trajectories. https://www.microsoft.com/en-us/download/

details.aspx?id=52367.

[4] [n. d.]. Los Angeles Bike Trip Data. https://bikeshare.metro.net/about/data/.

[5] [n. d.]. QGIS. https://docs.qgis.org/3.28/en/docs/user_manual/processing_algs/

qgis/interpolation.html#line-density.

[6] [n. d.]. San Francisco taxi trajectories. https://figshare.com/articles/dataset/

San_Francisco_taxi_trajectories/12302243.

[7] [n. d.]. Taxi Trips 2020. https://data.cityofchicago.org/Transportation/Taxi-

Trips-2020/r2u4-wwk3.

[8] Robert A Adams and Christopher Essex. 2018. Calculus: a complete course.
Pearson.

[9] Michael J Allen, Thomas R Allen, Christopher Davis, and George McLeod. 2021.

Exploring spatial patterns of virginia tornadoes using kernel density and space-

time cube analysis (1960–2019). ISPRS International Journal of Geo-Information
10, 5 (2021), 310.

[10] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-Tree: An Efficient and Robust Access Method for Points and

Rectangles. In SIGMOD. 322–331.
[11] J. Adam Beeco, Jeffrey C. Hallo, William ‘Rockie’ English, and GaryW. Giumetti.

2013. The importance of spatial nested data in understanding the relationship

between visitor use and landscape impacts. Applied Geography 45 (2013), 147–

157. https://doi.org/10.1016/j.apgeog.2013.09.001

[12] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Asso-

ciative Searching. Commun. ACM 18, 9 (1975), 509–517.

[13] Sergei Bespamyatnikh and Jack Snoeyink. 2000. Queries with segments in

Voronoi diagrams. Comput. Geom. 16, 1 (2000), 23–33. https://doi.org/10.1016/

S0925-7721(99)00055-3

[14] Bin Cao, Chenyu Hou, Suifei Li, Jing Fan, Jianwei Yin, Baihua Zheng, and

Jie Bao. 2018. SIMkNN: A Scalable Method for in-Memory kNN Search over

Moving Objects in Road Networks. IEEE Trans. Knowl. Data Eng. 30, 10 (2018),
1957–1970. https://doi.org/10.1109/TKDE.2018.2808971

[15] Tsz Nam Chan, Reynold Cheng, and Man Lung Yiu. 2020. QUAD: Quadratic-

Bound-based Kernel Density Visualization. In SIGMOD. 35–50. https://doi.org/

10.1145/3318464.3380561

[16] Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, and Jianliang Xu. 2022.

SAFE: A Share-and-Aggregate Bandwidth Exploration Framework for Kernel

Density Visualization. Proc. VLDB Endow. 15, 3 (2022), 513–526.
[17] Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Weng Hou Tong, Shivansh Mittal, Ye

Li, and Reynold Cheng. 2021. KDV-Explorer: A Near Real-Time Kernel Density

Visualization System for Spatial Analysis. Proc. VLDB Endow. 14, 12 (2021),

2655–2658.

[18] Tsz Nam Chan, Pak Lon Ip, Kaiyan Zhao, Leong Hou U, Byron Choi, and

Jianliang Xu. 2022. LIBKDV: A Versatile Kernel Density Visualization Library

for Geospatial Analytics. Proc. VLDB Endow. 15, 12 (2022), 3606–3609. https:

//www.vldb.org/pvldb/vol15/p3606-chan.pdf

[19] Tsz Nam Chan, Leong Hou U, Reynold Cheng, Man Lung Yiu, and Shivansh

Mittal. 2022. Efficient Algorithms for Kernel Aggregation Queries. IEEE Trans.
Knowl. Data Eng. 34, 6 (2022), 2726–2739. https://doi.org/10.1109/TKDE.2020.

3018376

[20] Tsz Nam Chan, Leong Hou U, Byron Choi, and Jianliang Xu. 2022. SLAM:

Efficient Sweep Line Algorithms for Kernel Density Visualization. In SIGMOD.
ACM, 2120–2134. https://doi.org/10.1145/3514221.3517823

[21] Tsz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu, and Reynold Cheng.

2023. Kernel Density Visualization for Big Geospatial Data: Algorithms and

Applications. InMDM. IEEE, 231–234. https://doi.org/10.1109/MDM58254.2023.

00046

[22] Tsz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu, and Reynold Cheng.

2023. Large-scale Geospatial Analytics: Problems, Challenges, and Opportu-

nities. In SIGMOD Companion. ACM, 21–29. https://doi.org/10.1145/3555041.

3589401

[23] Tsz Nam Chan, Man Lung Yiu, and Leong Hou U. 2019. KARL: Fast Kernel

Aggregation Queries. In ICDE. 542–553. https://doi.org/10.1109/ICDE.2019.

00055

[24] Tsz Nam Chan, Man Lung Yiu, and Leong Hou U. 2021. The Power of Bounds:

Answering Approximate Earth Mover’s Distance with Parametric Bounds. IEEE
Trans. Knowl. Data Eng. 33, 2 (2021), 768–781. https://doi.org/10.1109/TKDE.

2019.2931969

[25] Tsz Nam Chan, Bojian Zhu, Dingming Wu, Yun Peng, and Leong Hou U. 2024.

Supplementary Document for “LARGE: A Length-Aggregation-based Grid Struc-

ture for Line Density Visualization”. https://github.com/edisonchan2013928/

LARGE_supplementary_document/blob/main/LARGE_supplementary.pdf.

[26] Changjie Chen, Jasmeet Judge, and David Hulse. 2022. PyLUSAT: An open-

source Python toolkit for GIS-based land use suitability analysis. Environmental
Modelling & Software 151 (2022), 105362. https://doi.org/10.1016/j.envsoft.2022.

105362

[27] Danny Ziyi Chen and Haitao Wang. 2015. Weak visibility queries of line

segments in simple polygons. Comput. Geom. 48, 6 (2015), 443–452. https:

//doi.org/10.1016/j.comgeo.2015.02.001

[28] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient

Access Method for Similarity Search in Metric Spaces. In VLDB. 426–435.
[29] Ovidiu Daescu and Robert Serfling. 2005. Extremal point queries with lines

and line segments and related problems. Comput. Geom. 32, 3 (2005), 223–237.
https://doi.org/10.1016/j.comgeo.2005.03.002

[30] Jian Dai, Bin Yang, Chenjuan Guo, and Zhiming Ding. 2015. Personalized route

recommendation using big trajectory data. In ICDE. IEEE, 543–554. https:

//doi.org/10.1109/ICDE.2015.7113313

[31] Urška Demšar, Kevin Buchin, Francesca Cagnacci, Kamran Safi, Bettina Speck-

mann, Nico Van de Weghe, Daniel Weiskopf, and Robert Weibel. 2015. Analysis

and visualisation of movement: an interdisciplinary review. Movement ecology
3, 1 (2015), 1–24.

[32] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce

framework for spatial data. In ICDE. IEEE, 1352–1363. https://doi.org/10.1109/

ICDE.2015.7113382

[33] Christos Faloutsos, Timos K. Sellis, and Nick Roussopoulos. 1987. Analysis of

Object Oriented Spatial Access Methods. In SIGMOD. ACM, 426–439. https:

//doi.org/10.1145/38713.38758

[34] Ziquan Fang, Lu Chen, Yunjun Gao, Lu Pan, and Christian S. Jensen. 2021.

Dragoon: a hybrid and efficient big trajectory management system for offline

and online analytics. VLDB J. 30, 2 (2021), 287–310. https://doi.org/10.1007/

s00778-021-00652-x

[35] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi.

2000. Vector Approximation based Indexing for Non-uniformHigh Dimensional

Data Sets. In CIKM. ACM, 202–209. https://doi.org/10.1145/354756.354820

[36] Edward Gan and Peter Bailis. 2017. Scalable Kernel Density Classification via

Threshold-Based Pruning. In ACM SIGMOD. 945–959.
[37] Thanasis Georgiadis and Nikos Mamoulis. 2023. Raster Intervals: An Approxi-

mation Technique for Polygon Intersection Joins. Proc. ACM Manag. Data 1, 1
(2023), 36:1–36:18. https://doi.org/10.1145/3588716

[38] Anita Graser. 2021. An exploratory data analysis protocol for identifying

problems in continuous movement data. Journal of Location Based Services 15,
2 (2021), 89–117.

[39] Richard L Graw and Bret A Anderson. 2022. Strategies to reduce wildfire smoke

in frequently impacted communities in south-western Oregon. International
Journal of Wildland Fire 31, 12 (2022), 1155–1166.

[40] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-

ing. In SIGMOD. 47–57.
[41] Kazumasa Hanaoka, Tomoki Nakaya, Keiji Yano, and Shigeru Inoue. 2014.

Network-based spatial interpolation of commuting trajectories: Application

of a university commuting management project in Kyoto, Japan. Journal of
Transport Geography 34 (2014), 274–281.

[42] Gísli R. Hjaltason and Hanan Samet. 2002. Speeding up construction of PMR

quadtree-based spatial indexes. VLDB J. 11, 2 (2002), 109–137. https://doi.org/

10.1007/s00778-002-0067-8

[43] Gísli R. Hjaltason, Hanan Samet, and Yoram J. Sussmann. 1997. Speeding up

Bulk-Loading of Quadtrees. In GIS. ACM, 50–53. https://doi.org/10.1145/267825.

267839

[44] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant.

1997. Range Queries in OLAP Data Cubes. In SIGMOD. 73–88.
[45] Erik G. Hoel and Hanan Samet. 1991. Efficient Processing of Spatial Queries in

Line Segment Databases. In SSD. Springer, 237–256. https://doi.org/10.1007/3-

540-54414-3_41

[46] Erik G. Hoel and Hanan Samet. 1992. A Qualitative Comparison Study of

Data Structures for Large Line Segment Databases. In SIGMOD. ACM, 205–214.

https://doi.org/10.1145/130283.130316

[47] Erik G. Hoel and Hanan Samet. 1995. Benchmarking Spatial Join Operations

with Spatial Output. In VLDB. Morgan Kaufmann, 606–618. http://www.vldb.

org/conf/1995/P606.PDF

[48] Qiang Huang, Yifan Lei, and Anthony K. H. Tung. 2021. Point-to-Hyperplane

Nearest Neighbor Search Beyond the Unit Hypersphere. In SIGMOD. ACM,

777–789. https://doi.org/10.1145/3448016.3457240

[49] Qiang Huang and Anthony K. H. Tung. 2023. Lightweight-Yet-Efficient: Revi-

talizing Ball-Tree for Point-to-Hyperplane Nearest Neighbor Search. In ICDE.
IEEE, 436–449. https://doi.org/10.1109/ICDE55515.2023.00040

[50] Tabassum Zarina Insaf, Temilayo Adeyeye, Catherine Adler, Victoria Wagner,

Anisa Proj, Susan McCauley, and Jacqueline Matson. 2022. Road traffic density

and recurrent asthma emergency department visits among Medicaid enrollees

in New York State 2005–2015. Environmental Health 21, 1 (2022), 73.

[51] H. V. Jagadish. 1990. On Indexing Line Segments. In VLDB, Dennis McLeod,

Ron Sacks-Davis, and Hans-Jörg Schek (Eds.). Morgan Kaufmann, 614–625.

4597

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-line-density-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-line-density-works.htm
https://plugins.qgis.org/plugins/fast_line_density_analysis/
https://plugins.qgis.org/plugins/fast_line_density_analysis/
https://www.microsoft.com/en-us/download/details.aspx?id=52367
https://www.microsoft.com/en-us/download/details.aspx?id=52367
https://bikeshare.metro.net/about/data/
https://docs.qgis.org/3.28/en/docs/user_manual/processing_algs/qgis/interpolation.html#line-density
https://docs.qgis.org/3.28/en/docs/user_manual/processing_algs/qgis/interpolation.html#line-density
https://figshare.com/articles/dataset/San_Francisco_taxi_trajectories/12302243
https://figshare.com/articles/dataset/San_Francisco_taxi_trajectories/12302243
https://data.cityofchicago.org/Transportation/Taxi-Trips-2020/r2u4-wwk3
https://data.cityofchicago.org/Transportation/Taxi-Trips-2020/r2u4-wwk3
https://doi.org/10.1016/j.apgeog.2013.09.001
https://doi.org/10.1016/S0925-7721(99)00055-3
https://doi.org/10.1016/S0925-7721(99)00055-3
https://doi.org/10.1109/TKDE.2018.2808971
https://doi.org/10.1145/3318464.3380561
https://doi.org/10.1145/3318464.3380561
https://www.vldb.org/pvldb/vol15/p3606-chan.pdf
https://www.vldb.org/pvldb/vol15/p3606-chan.pdf
https://doi.org/10.1109/TKDE.2020.3018376
https://doi.org/10.1109/TKDE.2020.3018376
https://doi.org/10.1145/3514221.3517823
https://doi.org/10.1109/MDM58254.2023.00046
https://doi.org/10.1109/MDM58254.2023.00046
https://doi.org/10.1145/3555041.3589401
https://doi.org/10.1145/3555041.3589401
https://doi.org/10.1109/ICDE.2019.00055
https://doi.org/10.1109/ICDE.2019.00055
https://doi.org/10.1109/TKDE.2019.2931969
https://doi.org/10.1109/TKDE.2019.2931969
https://github.com/edisonchan2013928/LARGE_supplementary_document/blob/main/LARGE_supplementary.pdf
https://github.com/edisonchan2013928/LARGE_supplementary_document/blob/main/LARGE_supplementary.pdf
https://doi.org/10.1016/j.envsoft.2022.105362
https://doi.org/10.1016/j.envsoft.2022.105362
https://doi.org/10.1016/j.comgeo.2015.02.001
https://doi.org/10.1016/j.comgeo.2015.02.001
https://doi.org/10.1016/j.comgeo.2005.03.002
https://doi.org/10.1109/ICDE.2015.7113313
https://doi.org/10.1109/ICDE.2015.7113313
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1145/38713.38758
https://doi.org/10.1145/38713.38758
https://doi.org/10.1007/s00778-021-00652-x
https://doi.org/10.1007/s00778-021-00652-x
https://doi.org/10.1145/354756.354820
https://doi.org/10.1145/3588716
https://doi.org/10.1007/s00778-002-0067-8
https://doi.org/10.1007/s00778-002-0067-8
https://doi.org/10.1145/267825.267839
https://doi.org/10.1145/267825.267839
https://doi.org/10.1007/3-540-54414-3_41
https://doi.org/10.1007/3-540-54414-3_41
https://doi.org/10.1145/130283.130316
http://www.vldb.org/conf/1995/P606.PDF
http://www.vldb.org/conf/1995/P606.PDF
https://doi.org/10.1145/3448016.3457240
https://doi.org/10.1109/ICDE55515.2023.00040

http://www.vldb.org/conf/1990/P614.PDF

[52] Christian S. Jensen, Dan Lin, and Beng Chin Ooi. 2004. Query and Update Effi-

cient B+-Tree Based Indexing of Moving Objects. In VLDB. Morgan Kaufmann,

768–779. https://doi.org/10.1016/B978-012088469-8.50068-1

[53] Fengmei Jin, Wen Hua, Boyu Ruan, and Xiaofang Zhou. 2022. Frequency-based

Randomization for Guaranteeing Differential Privacy in Spatial Trajectories. In

ICDE. IEEE, 1727–1739. https://doi.org/10.1109/ICDE53745.2022.00175

[54] Scott T. Leutenegger, Mario Alberto López, and J. M. Edgington. 1997. STR: A

Simple and Efficient Algorithm for R-Tree Packing. In ICDE. 497–506. https:

//doi.org/10.1109/ICDE.1997.582015

[55] Haoda Li, Qiyang Song, Guoliang Li, Qi Li, and Rengui Wang. 2022. GPSC: A

Grid-Based Privacy-Reserving Framework for Online Spatial Crowdsourcing.

IEEE Trans. Knowl. Data Eng. 34, 11 (2022), 5378–5390. https://doi.org/10.1109/

TKDE.2021.3055623

[56] Jin Li and Andrew D. Heap. 2014. Spatial interpolation methods applied in

the environmental sciences: A review. Environmental Modelling & Software 53
(2014), 173–189. https://doi.org/10.1016/j.envsoft.2013.12.008

[57] Jiajia Li, Cancan Ni, Dan He, Lei Li, Xiufeng Xia, and Xiaofang Zhou. 2023.

Efficient kNN query for moving objects on time-dependent road networks.

VLDB J. 32, 3 (2023), 575–594. https://doi.org/10.1007/s00778-022-00758-w

[58] Jie Lin. 2023. Comparison of Moran’s I and Geary’s c

in Multivariate Spatial Pattern Analysis. Geographical Analy-
sis 55, 4 (2023), 685–702. https://doi.org/10.1111/gean.12355

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/gean.12355

[59] Michael Lindenbaum, Hanan Samet, and Gísli R. Hjaltason. 2005. A Probabilistic

Analysis of Trie-Based Sorting of Large Collections of Line Segments in Spatial

Databases. SIAM J. Comput. 35, 1 (2005), 22–58. https://doi.org/10.1137/

S0097539700368527

[60] Zuopeng Ma, Chenggu Li, Pingyu Zhang, Jing Zhang, Daqian Liu, and Mingke

Xie. 2023. The impact of transportation on commercial activities: The stories

of various transport routes in Changchun, China. Cities 132 (2023), 103979.

https://doi.org/10.1016/j.cities.2022.103979

[61] Harvey J. Miller, Somayeh Dodge, Jennifer A. Miller, and Gil Bohrer. 2019.

Towards an integrated science of movement: converging research on animal

movement ecology and human mobility science. Int. J. Geogr. Inf. Sci. 33, 5
(2019), 855–876. https://doi.org/10.1080/13658816.2018.1564317

[62] Masoud Minaei. 2020. Evolution, density and completeness of OpenStreetMap

road networks in developing countries: the case of Iran. Applied geography 119

(2020), 102246.

[63] AndrewW. Moore. 2000. The Anchors Hierarchy: Using the Triangle Inequality

to Survive High Dimensional Data. In UAI. 397–405.
[64] Fazzami Othman, Zaharah M. Yusoff, and Siti Aekbal Salleh. 2020. Assessing

the visualization of space and traffic volume using GIS-based processing and

visibility parameters of space syntax. Geo-spatial Information Science 23, 3
(2020), 209–221. https://doi.org/10.1080/10095020.2020.1811781

[65] Mark H. Overmars. 1985. Range searching in a set of line segments. In SCG.
ACM, 177–185. https://doi.org/10.1145/323233.323257

[66] Cesar Palomo, Zhan Guo, Cláudio T. Silva, and Juliana Freire. 2016. Visually

Exploring Transportation Schedules. IEEE Trans. Vis. Comput. Graph. 22, 1
(2016), 170–179. https://doi.org/10.1109/TVCG.2015.2467592

[67] Costas Panagiotakis, Nikos Pelekis, Ioannis Kopanakis, Emmanuel Ramasso,

and Yannis Theodoridis. 2012. Segmentation and Sampling of Moving Object

Trajectories Based on Representativeness. IEEE Trans. Knowl. Data Eng. 24, 7
(2012), 1328–1343. https://doi.org/10.1109/TKDE.2011.39

[68] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.

In SIGMOD. ACM, 259–270. https://doi.org/10.1145/233269.233338

[69] Parsa Pezeshknejad, Saeed Monajem, and Hamid Mozafari. 2020. Evaluating

sustainability and land use integration of BRT stations via extended node place

model, an application on BRT stations of Tehran. Journal of Transport Geography
82 (2020), 102626. https://doi.org/10.1016/j.jtrangeo.2019.102626

[70] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. 2000. Novel Ap-

proaches to the Indexing of Moving Object Trajectories. In VLDB. Morgan

Kaufmann, 395–406. http://www.vldb.org/conf/2000/P395.pdf

[71] Jeff M. Phillips. 2013. 𝜖-Samples for Kernels. In SODA. 1622–1632. https:

//doi.org/10.1137/1.9781611973105.116

[72] Jeff M. Phillips and Wai Ming Tai. 2018. Improved Coresets for Kernel Density

Estimates. In SODA. 2718–2727. https://doi.org/10.1137/1.9781611975031.173

[73] JeffM. Phillips andWaiMing Tai. 2018. Near-Optimal Coresets of Kernel Density

Estimates. In SOCG. 66:1–66:13. https://doi.org/10.4230/LIPIcs.SoCG.2018.66

[74] Steven D. Prager and R. Paul Wiegand. 2014. Modeling Use of Space from Social

Media Data Using a Biased Random Walker. Trans. GIS 18, 6 (2014), 817–833.
https://doi.org/10.1111/tgis.12069

[75] Alasdair Rae. 2009. From spatial interaction data to spatial interaction informa-

tion? Geovisualisation and spatial structures of migration from the 2001 UK

census. Computers, Environment and Urban Systems 33, 3 (2009), 161–178.
[76] Dimitris Sacharidis, Kostas Patroumpas, Manolis Terrovitis, Verena Kantere,

Michalis Potamias, Kyriakos Mouratidis, and Timos K. Sellis. 2008. On-line

discovery of hot motion paths. In EDBT, Vol. 261. ACM, 392–403. https://doi.

org/10.1145/1353343.1353392

[77] Günther Sagl, Martin Loidl, and Euro Beinat. 2012. A visual analytics approach

for extracting spatio-temporal urban mobility information frommobile network

traffic. ISPRS International Journal of Geo-Information 1, 3 (2012), 256–271.

[78] H. Samet. 2006. Foundations of Multidimensional and Metric Data Structures.
[79] Hanan Samet. 2013. Sorting in Space: Multidimensional, spatial, and metric

data structures for applications in spatial databases, geographic information

systems (GIS), and location-based services. In ICDE. IEEE, 1254–1257. https:

//doi.org/10.1109/ICDE.2013.6544917

[80] D. W. Scott. 1992. Multivariate Density Estimation: Theory, Practice, and Visual-
ization. Wiley. https://books.google.com.hk/books?id=7crCUS_F2ocC

[81] Shuo Shang, Lisi Chen, Zhewei Wei, Christian S. Jensen, Kai Zheng, and Panos

Kalnis. 2017. Trajectory Similarity Join in Spatial Networks. Proc. VLDB Endow.
10, 11 (2017), 1178–1189. https://doi.org/10.14778/3137628.3137630

[82] Shuo Shang, Lisi Chen, Kai Zheng, Christian S. Jensen, Zhewei Wei, and Panos

Kalnis. 2019. Parallel Trajectory-to-Location Join. IEEE Trans. Knowl. Data Eng.
31, 6 (2019), 1194–1207. https://doi.org/10.1109/TKDE.2018.2854705

[83] Seyedeh Zeinab Shogrkhodaei, Seyed Vahid Razavi-Termeh, and Amanollah

Fathnia. 2021. Spatio-temporal modeling of PM2.5 risk mapping using three

machine learning algorithms. Environmental Pollution 289 (2021), 117859.

[84] Bernard W Silverman. 2018. Density estimation for statistics and data analysis.
Routledge.

[85] Justin Song, Richard Frank, Patricia L. Brantingham, and Jim LeBeau. 2012.

Visualizing the spatial movement patterns of offenders. In SIGSPATIAL. ACM,

554–557. https://doi.org/10.1145/2424321.2424413

[86] Lisa Tompson, Henry Partridge, and Naomi Shepherd. 2009. Hot routes: De-

veloping a new technique for the spatial analysis of crime. Crime Mapping: A
Journal of Research and Practice 1, 1 (2009), 77–96.

[87] Reaz Uddin, Chinya V. Ravishankar, and Vassilis J. Tsotras. 2018. Indexing

moving object trajectories with hilbert curves. In SIGSPATIAL. ACM, 416–419.

https://doi.org/10.1145/3274895.3274912

[88] Haojun Wang and Roger Zimmermann. 2010. A Novel Dual-Index Design

to Efficiently Support Snapshot Location-Based Query Processing in Mobile

Environments. IEEE Trans. Mob. Comput. 9, 9 (2010), 1280–1292. https://doi.

org/10.1109/TMC.2010.63

[89] RogerWeber, Hans-Jörg Schek, and Stephen Blott. 1998. AQuantitative Analysis

and Performance Study for Similarity-Search Methods in High-Dimensional

Spaces. In VLDB. 194–205.
[90] Jessica L Weir, Kirsten Vacura, Jay Bagga, Adam Berland, Kieran Hyder, Chris-

tian Skov, Johan Attby, and Paul A Venturelli. 2022. Big data from a popular app

reveals that fishing creates superhighways for aquatic invaders. PNAS nexus 1,
3 (2022), pgac075.

[91] Xike Xie, Hua Lu, and Torben Bach Pedersen. 2013. Efficient distance-aware

query evaluation on indoor moving objects. In ICDE. IEEE, 434–445. https:

//doi.org/10.1109/ICDE.2013.6544845

[92] Bo Yang, Lin Liu, Minxuan Lan, Zengli Wang, Hanlin Zhou, and Hongjie Yu.

2020. A spatio-temporal method for crime prediction using historical crime

data and transitional zones identified from nightlight imagery. International
Journal of Geographical Information Science 34, 9 (2020), 1740–1764.

[93] Wenyue Yang, Bi Yu Chen, Xiaoshu Cao, Tao Li, and Peng Li. 2017. The

spatial characteristics and influencing factors of modal accessibility gaps: A

case study for Guangzhou, China. Journal of Transport Geography 60 (2017),

21–32. https://doi.org/10.1016/j.jtrangeo.2017.02.005

[94] Wei Yang, Jie Hu, Yong Liu, and Wenbo Guo. 2023. Examining the influence of

neighborhood and street-level built environment on fitness jogging in Chengdu,

China: a massive GPS trajectory data analysis. Journal of transport geography
108 (2023), 103575.

[95] Xue Yang, Xuejiao Zheng, Yanjia Cao, Hao Chen, Luliang Tang, and Honghai

Yang. 2023. Connectivity analysis in pedestrian networks: A case study in

Wuhan, China. Applied geography 151 (2023), 102843.

[96] Jia Yu and Mohamed Sarwat. 2021. GeoSparkViz: a cluster computing system

for visualizing massive-scale geospatial data. VLDB J. 30, 2 (2021), 237–258.

https://doi.org/10.1007/s00778-020-00645-2

[97] P. Zezula, G. Amato, V. Dohnal, and M. Batko. 2006. Similarity Search: The
Metric Space Approach. Springer US. https://books.google.com.hk/books?id=

KTkWXsiPXR4C

[98] Baihua Zheng, Jianliang Xu, Wang-Chien Lee, and Dik Lun Lee. 2006. Grid-

partition index: a hybrid method for nearest-neighbor queries in wireless

location-based services. VLDB J. 15, 1 (2006), 21–39. https://doi.org/10.1007/

s00778-004-0146-0

[99] Yan Zheng, Jeffrey Jestes, Jeff M. Phillips, and Feifei Li. 2013. Quality and

efficiency for kernel density estimates in large data. In SIGMOD. 433–444.
[100] Yan Zheng, Yi Ou, Alexander Lex, and Jeff M. Phillips. 2021. Visualization of

Big Spatial Data Using Coresets for Kernel Density Estimates. IEEE Trans. Big
Data 7, 3 (2021), 524–534. https://doi.org/10.1109/TBDATA.2019.2913655

[101] Yan Zheng and Jeff M. Phillips. 2015. L∞ Error and Bandwidth Selection

for Kernel Density Estimates of Large Data. In SIGKDD. 1533–1542. https:

//doi.org/10.1145/2783258.2783357

4598

http://www.vldb.org/conf/1990/P614.PDF
https://doi.org/10.1016/B978-012088469-8.50068-1
https://doi.org/10.1109/ICDE53745.2022.00175
https://doi.org/10.1109/ICDE.1997.582015
https://doi.org/10.1109/ICDE.1997.582015
https://doi.org/10.1109/TKDE.2021.3055623
https://doi.org/10.1109/TKDE.2021.3055623
https://doi.org/10.1016/j.envsoft.2013.12.008
https://doi.org/10.1007/s00778-022-00758-w
https://doi.org/10.1111/gean.12355
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/gean.12355
https://doi.org/10.1137/S0097539700368527
https://doi.org/10.1137/S0097539700368527
https://doi.org/10.1016/j.cities.2022.103979
https://doi.org/10.1080/13658816.2018.1564317
https://doi.org/10.1080/10095020.2020.1811781
https://doi.org/10.1145/323233.323257
https://doi.org/10.1109/TVCG.2015.2467592
https://doi.org/10.1109/TKDE.2011.39
https://doi.org/10.1145/233269.233338
https://doi.org/10.1016/j.jtrangeo.2019.102626
http://www.vldb.org/conf/2000/P395.pdf
https://doi.org/10.1137/1.9781611973105.116
https://doi.org/10.1137/1.9781611973105.116
https://doi.org/10.1137/1.9781611975031.173
https://doi.org/10.4230/LIPIcs.SoCG.2018.66
https://doi.org/10.1111/tgis.12069
https://doi.org/10.1145/1353343.1353392
https://doi.org/10.1145/1353343.1353392
https://doi.org/10.1109/ICDE.2013.6544917
https://doi.org/10.1109/ICDE.2013.6544917
https://books.google.com.hk/books?id=7crCUS_F2ocC
https://doi.org/10.14778/3137628.3137630
https://doi.org/10.1109/TKDE.2018.2854705
https://doi.org/10.1145/2424321.2424413
https://doi.org/10.1145/3274895.3274912
https://doi.org/10.1109/TMC.2010.63
https://doi.org/10.1109/TMC.2010.63
https://doi.org/10.1109/ICDE.2013.6544845
https://doi.org/10.1109/ICDE.2013.6544845
https://doi.org/10.1016/j.jtrangeo.2017.02.005
https://doi.org/10.1007/s00778-020-00645-2
https://books.google.com.hk/books?id=KTkWXsiPXR4C
https://books.google.com.hk/books?id=KTkWXsiPXR4C
https://doi.org/10.1007/s00778-004-0146-0
https://doi.org/10.1007/s00778-004-0146-0
https://doi.org/10.1109/TBDATA.2019.2913655
https://doi.org/10.1145/2783258.2783357
https://doi.org/10.1145/2783258.2783357

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Baseline Solution 1: Sequential Scan
	2.3 Baseline Solution 2: Hierarchical Indexing Framework

	3 Our Solution
	3.1 Core Idea
	3.2 LARGE: A Length-Aggregation-based Grid Structure
	3.3 Square-shaped Lower and Upper Bound Functions
	3.4 Arbitrary-shaped Lower and Upper Bound Functions
	3.5 Filter and Refinement Framework
	3.6 Tightness of Bound Functions

	4 Experimental Evaluation
	4.1 Experimental Settings
	4.2 Efficiency of All Methods
	4.3 Space Consumption of All Methods
	4.4 Accuracy of All Methods
	4.5 Effectiveness of Bound Functions
	4.6 Case Study

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

