Kernel Density Visualization for Big Geospatial
Data: Algorithms and Applications

Tsz Nam Chan*, Leong Hou U', Byron Choi*, Jianliang Xu*, Reynold Cheng*$
*Department of Computer Science, Hong Kong Baptist University
{edisonchan, bchoi, xujl} @comp.hkbu.edu.hk
TDepartment of Computer and Information Science, University of Macau
ryanlhu@um.edu.mo
j;Department of Computer Science, The University of Hong Kong
ckcheng @cs.hku.hk
§Guangdong—Hong Kong-Macau Joint Laboratory

Abstract—The use of Kernel Density Visualization (KDV)
has become widespread in a number of disciplines, including
geography, crime science, transportation science, and ecology,
for analyzing geospatial data. However, the growing scale of
massive geospatial data has rendered many commonly used
software tools unable of generating high-resolution KDVs, leading
to concerns about the inefficiency of KDV. This 90-minute tutorial
aims to raise awareness among database researchers about
this important, emerging, database-related, and interdisciplinary
topic. It is structured into four parts: a thorough discussion of
the background of KDV, a review of state-of-the-art methods for
generating KDVs, a discussion of key variants of KDV, including
network kernel density visualization (NKDV) and spatiotemporal
kernel density visualization (STKDV), and an outline of future
directions for this topic.

I. INTRODUCTION

Kernel Density Visualization (KDV) [20], [13] is widely
used in various applications for analyzing geospatial data.
Some representative examples include crime hotspot detec-
tion [12], [46], [32], [35], traffic accident hotspot detec-
tion [36], [53], [57], [55], [54], disease outbreak detection [31],
[26], [25], and ecological modeling [56], [52]. Using Figure 1
(obtained from [20]) as an example, domain experts can adopt
KDV to generate hotspot maps [12], [33] for a location dataset
in different geographical regions, using various exploratory
operations (e.g., zoom-in, zoom-out, and panning), so as to
identify the hotspots.

Due to its wide range of applications, many geographical
software tools, e.g., QGIS [7] and ArcGIS [1], scientific
software tools, e.g., Scikit-learn [41] and Scipy [8], and
visualization software tools, e.g., Deck.gl [3] and Seaborn [9],
can support this operation. However, with the growing size
of big geospatial data, such as the Chicago crime dataset [2]
with 7.74 million location data points and the New York
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Fig. 1: Using KDV to generate the hotspot maps for the New
York traffic accident dataset [6] in two regions, where each
pixel with red color denotes the hotspot location.

(a) Upper Manhattan

traffic accident dataset [6] with 1.97 million location data
points, off-the-shelf software tools that use simple algorithms
are infeasible for generating multiple KDVs for these large
datasets. For this reason, developing efficient solutions for
generating KDV is an important, emerging, database-
related, and interdisciplinary topic. In this tutorial, we aim
to bring attention to this important topic among database
researchers and practitioners by highlighting the challenges,
state-of-the-art methods, and opportunities for further research
and development in KDV.

Target audience of this tutorial: We mainly target the MDM
attendees who are interested in (1) conducting research for
geospatial visual analytics, (2) adopting visualization tools
for analyzing location data, or (3) incorporating the latest
visualization technologies into software packages. The audi-
ence needs to understand some basic database concepts, e.g.,
indexing. However, this tutorial is self-contained, which does
not require prior knowledge of geospatial visualization.
Comparisons with other related tutorials: Although many
tutorials that are related to spatial/spatiotemporal databases
and visual analytics have been conducted in the database
community [34], [47], [50], [58], [27], [24], none of them
has focused on using KDV to support visual analysis tasks.
As a remark, the authors will provide another tutorial [21] in
SIGMOD 2023. Compared with [21], this tutorial will deeply
focus on visual analytics rather than a general introduction to
geospatial analytics.

Related work from authors: We have extensively worked on
improving the efficiency of solving KDV-related problems in
recent years [21], [20], [15], [14], [18], [13], [19], [22] and



have successfully built one system prototype [16] and two
python libraries [17], [23] for supporting KDV and its variants.
Moreover, we have jointly developed two widely used COVID-
19 hotspot maps [4], [5], for Hong Kong and Macau citizens
to visualize COVID-19 hotspots.

II. TUTORIAL OUTLINE

This tutorial lasts for 1.5 hours, which consists of four parts.
First, we will review the background of KDV, including the
motivation, the problem definition, the comparison with other
traditional visualization methods (e.g., scatter plot [39], [38]
and histogram [37], [51], [49]), and the software development
for KDV (30 mins). Then, we provide a comprehensive review
for the state-of-the-art methods for generating KDVs (20
mins). After that, we discuss other variants of KDV, including
network kernel density visualization (NKDV) [18], [26], [55]
and spatiotemporal kernel density visualization (STKDV) [15],
[32], [25] (20 mins). Lastly, we outline the open problems for
future opportunities (20 mins).

A. Background of KDV

In the first part of the tutorial, we will discuss how KDV
is used to support different types of applications, including
crime hotspot detection, traffic accident hotspot detection,
disease outbreak detection, and ecological modeling, in detail.
In addition, we will discuss the formal definition of the KDV
problem (cf. Definition 1).

Definition 1: (KDV [20]) Given a location dataset P =
{P1, P2, ---, Pn} With n spatial data points and a geographical
region with X xY pixels, we need to color each pixel q based
on the kernel density value Fp(q) (cf. Equation 1).

Fp(a) =Y w-K(q,p)
peP
where w and K(q,p) denote the normalization constant
and kernel function, respectively. Some representative kernel
functions are shown in Table I.
TABLE I: Representative kernel functions.
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Furthermore, since there are other types of visualization
tools, e.g., scatter plot and histogram, we will provide some
examples to show that KDV can achieve better visual quality
compared with those visualization tools. In addition, we will
survey different software tools for generating KDVs (e.g.,
ArcGIS, QGIS, Scipy, and Scikit-learn) and discuss their
advantages and disadvantages.

B. State-of-the-art Methods for Generating KDVs

In the second part of the tutorial, we will review three
types of methods for improving the efficiency of generating
KDVs, including (1) function approximation methods, (2) data
sampling methods, and (3) computational sharing methods. In
addition, we will discuss the pros and cons of these methods.

Function approximation methods: In the first type of research
studies, researchers [29], [28], [22], [13], [19] first develop
the efficient lower and upper bound functions, LB(q) and
UB(q), respectively, for the kernel density function Fp(q)
(cf. Equation 1), i.e., LB(q) < Fp(q) < UB(q). Then, they
incorporate these bound functions into an index structure (e.g.,
kd-tree [10] and ball-tree [40]) to progressively tighten LB(q)
and UB(q) (by traversing the index structure) so that these
bound values can achieve the approximation guarantee € for
computing the approximate kernel density value R(q), where:
UB(q)

LB(q)

<l+e—=(1-¢)Fp(a) < R(a) < (1+e)Fp(a)
2

Data sampling methods: In the second type of research
studies, researchers [43], [44], [60], [59], [42] propose to
obtain the subset S of the dataset P. Then, they can compute
the modified kernel density function F, gM)(q) for this subset
S, where:

F&M @) =Y wi- K(a,p)

pi€S

They show that F, éM)(q) is theoretically close to the original
kernel density value Fp(q) with the probabilistic guarantee.
Since they can also provide the non-trivial upper bound for
the subset size, computing JF. éM) (q) can be significantly faster
than Fp(q).
Computational sharing methods: In the third type of research
studies, some researchers [20], [14], [30] exploit some sharing
properties in order to improve the efficiency for computing a
single KDV or multiple KDVs. Some of these research studies
(e.g., [20], [14]) can further reduce the time complexity for
generating KDVs with non-trivial accuracy guarantees.

C. Other Variants of KDV

In the third part of the tutorial, we will discuss two
important variants of KDV, namely network kernel density
visualization (NKDV) and spatiotemporal kernel density vi-
sualization (STKDV).
NKDV: Since some categories of geographical events, in-
cluding traffic accidents and crime events, mainly occur in
a road network, using the Euclidean distance dist(q,p) in
the kernel function K(q,p) (cf. Table I) can overestimate
the density value of each position (cf. Figure 2, modified
from [18]). Therefore, geographical researchers [55], [54]
propose to replace dist(q, p) in K(q,p) by the shortest path
distance distg(q,p). In this tutorial, we will also review
different methods for generating NKDV (e.g., [18], [45], [54]).
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Fig. 2: Since qs is far away from the black points in terms of
the shortest path distance, we should assign a smaller density
value for g2 compared with q;.

STKDV: In practice, some geographical phenomena, e.g., the
distribution of COVID-19 cases, significantly depend on the
event time. Using the COVID-19 cases in Hong Kong (cf.



Figure 3, obtained from [15]) as an example, observe that the
third wave is more serious than the second wave in Hong
Kong. As such, geographical researchers propose to adopt
STKDV [36], [32], [25]. In this tutorial, we will discuss
different methods [15], [48] for generating STKDV.
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Fig. 3: The seriousness and distribution of COVID-19 cases in
Hong Kong, generated by STKDYV, depend on the wave/time.

D. Future Opportunities

In the fourth part of the tutorial, we will discuss the future
opportunities for both researchers and practitioners. In the
following, we will highlight some of the promising directions.
Optimal solutions for solving KDV, NKDV, and STKDV:
Although many advanced algorithms have been proposed to
improve the efficiency for different variants of KDV (e.g.,
[20] for KDV, [18] for NKDV, and [15] for STKDV), these
algorithms have not been proven to be optimal. We use KDV
(cf. Definition 1) as an example. Recall that generating KDV
needs to compute the kernel density function Fp(q) (cf.
Equation 1) for each pixel q. Therefore, every algorithm needs
to at least access all (i.e., n) data points in P and all (i.e.,
X x Y) pixels, which takes Q(XY + n) time. However,
the state-of-the-art algorithm [20] takes O(Y (X + n)) time,
which still has a significant gap from the lower bound time
complexity. As such, finding the optimal solutions for these
problems is the promising direction.
Efficient algorithms for other kernel functions: In the state-
of-the-art research studies [20], [18], [15], they mainly focus
on the limited set of kernel functions (e.g., Epanechnikov and
quartic kernels). However, these methods cannot be extended
to support other important kernel functions (e.g., Gaussian
kernel, cosine kernel, and exponential kernel) that can be sup-
ported by the famous software tools (e.g., Scikit-learn [41]).
Therefore, finding an efficient solution for supporting other
kernel functions is also the important direction.
Efficient algorithms for bandwidth tuning: In Table I, the
bandwidth parameter b can significantly affect the visual qual-
ity of hotspot maps. Therefore, many geographical researchers
(e.g., [57], [35]) need to generate multiple KDVs by varying
this parameter, which can further deteriorate the inefficiency
issue. However, there are only a few research studies that
focus on this issue [14], [30]. In addition, these studies
are restricted to handle KDV. As such, developing efficient
algorithms for supporting both KDV, NKDV, and STKDV is
another important direction.
Software development with efficient algorithms: Although
many commonly-used software tools have been developed
to generate KDV, most of these tools only adopt the basic
algorithms, which are not feasible to support high-resolution

KDV with large-scale datasets. Furthermore, only a few soft-
ware tools can generate NKDV and STKDV. Based on these
reasons, developing a new and an efficient software package
to support different variants of KDV is also the promising
direction.
ITI. BIOGRAPHIES

Tsz Nam Chan is a Research Assistant Professor in the
Hong Kong Baptist University. He received his PhD degree
and BEng degree from the Hong Kong Polytechnic University
in 2019 and 2014, respectively. His research interests include
large-scale data visualization and spatiotemporal databases.
Leong Hou U is an Associate Professor with University of
Macau. He received the PhD degree from the University of
Hong Kong in 2010. His research interests include large-scale
query processing, scalable graph databases, graph learning,
and reinforcement learning.

Byron Choi obtained the PhD and MSE degrees in Computer
and Information Science from the University of Pennsylvania.
He received a BEng degree in Computer Engineering from
HKUST. He is currently the Associate Head and a Professor
at the Department of Computer Science, Hong Kong Baptist
University (HKBU). His research interests include graph-
structured databases, database usability, database security, and
time series analysis. He was awarded a distinguished program
committee (PC) member from ACM SIGMOD 2021 and a
best reviewer award from ACM CIKM 2021. He received the
distinguished reviewer award from PVLDB 2019.
Jianliang Xu received the BEng degree in computer science
and engineering from Zhejiang University in 1998 and the PhD
degree in computer science from the Hong Kong University of
Science and Technology in 2002. He is currently a Professor
in the Department of Computer Science, Hong Kong Baptist
University. His research interests include database, blockchain,
and trusted computing. He has published 200+ papers in top-
tier conferences and journals. He received the best paper
awards of WISE2019 and MUST2021, and the best paper
award runner-up of CIKM2020. He has served as the associate
editor of TKDE and PVLDB, and the program committee
member of SIGMOD, VLDB, and ICDE.
Reynold Cheng is a Professor of the Department of Computer
Science in the University of Hong Kong (HKU). His research
interests are in data science, big graph analytics, and uncertain
data management. He received his BEng (Computer Engineer-
ing) in 1998, and MPhil (Computer Science and Information
Systems) in 2000 from HKU. He then obtained his MSc and
PhD degrees from the Department of Computer Science of
Purdue University in 2003 and 2005, respectively. He received
the SIGMOD Research Highlights Award 2020. He is a
member of IEEE and ACM, was a PC co-chair of IEEE ICDE
2021, and has been serving on the program committees and
review panels for leading database conferences and journals
like SIGMOD, VLDB, ICDE, KDD, and TODS.

REFERENCES
[1] ArcGIS. http://pro.arcgis.com/en/pro-app/tool-reference/
spatial-analyst/how-kernel-density- works.htm.

[2] Chicago data portal. https://data.cityofchicago.org/Public- Safety/
Crimes-2001-to-Present/ijzp-q8t2.



[3]

[4]
[5]

[7]
[8]

[9]
[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]
[29]
(30]

[31]

[32]

Deck.gl.
heatmap-layer.
Hong Kong COVID-19 hotspot map. https://covid19.comp.hkbu.edu.hk/.

https://deck.gl/docs/api-reference/aggregation-layers/

Macau COVID-19 hotspot map. http://degroup.cis.um.edu.mo/
covid-19/.
NYC open data. https://data.cityofnewyork.us/Public-Safety/

Motor- Vehicle- Collisions-Crashes/h9gi-nx95.

QGIS. https://docs.qgis.org/2.18/en/docs/user_manual/plugins/plugins_
heatmap.html.

Scipy.  https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
gaussian_kde.html.

Seaborn. https://seaborn.pydata.org/.

J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509-517, 1975.

M. Bil, R. Andrasik, and Z. Janoska. Identification of hazardous road
locations of traffic accidents by means of kernel density estimation and
cluster significance evaluation. Accident Analysis & Prevention, 55:265—
273, 2013.

Y. A. Castle and J. M. Kovacs. Identifying seasonal spatial patterns of
crime in a small northern city. Crime Science, 10(1):1-20, 2021.

T. N. Chan, R. Cheng, and M. L. Yiu. QUAD: Quadratic-bound-based
kernel density visualization. In SIGMOD, pages 35-50, 2020.

T. N. Chan, P. L. Ip, L. H. U, B. Choi, and J. Xu. SAFE: A
share-and-aggregate bandwidth exploration framework for kernel density
visualization. Proc. VLDB Endow., 15(3):513-526, 2021.

T. N. Chan, P. L. Ip, L. H. U, B. Choi, and J. Xu. SWS: A complexity-
optimized solution for spatial-temporal kernel density visualization.
Proc. VLDB Endow., 15(4):814-827, 2021.

T. N. Chan, P. L. Ip, L. H. U, W. H. Tong, S. Mittal, Y. Li, and R. Cheng.
KDV-Explorer: A near real-time kernel density visualization system for
spatial analysis. Proc. VLDB Endow., 14(12):2655-2658, 2021.

T. N. Chan, P. L. Ip, K. Zhao, L. H. U, B. Choi, and J. Xu. LIBKDV:
A versatile kernel density visualization library for geospatial analytics.
Proc. VLDB Endow., 15(12):3606-3609, 2022.

T. N. Chan, Z. Li, L. H. U, J. Xu, and R. Cheng. Fast augmentation
algorithms for network kernel density visualization. Proc. VLDB Endow.,
14(9):1503-1516, 2021.

T. N. Chan, L. H. U, R. Cheng, M. L. Yiu, and S. Mittal. Efficient
algorithms for kernel aggregation queries. IEEE Trans. Knowl. Data
Eng., 34(6):2726-2739, 2022.

T. N. Chan, L. H. U, B. Choi, and J. Xu. SLAM: Efficient sweep line
algorithms for kernel density visualization. In SIGMOD, pages 2120-
2134, 2022.

T. N. Chan, L. H. U, B. Choi, J. Xu, and R. Cheng. Large-scale geospa-
tial analytics: Problems, challenges, and opportunities. In SIGMOD,
2023 (To appear).

T. N. Chan, M. L. Yiu, and L. H. U. KARL: Fast kernel aggregation
queries. In ICDE, pages 542-553, 2019.

T. N. Chan, R. Zang, P. L. Ip, L. H. U, and J. Xu. PyNKDV:
An efficient network kernel density visualization library for geospatial
analytic systems. In SIGMOD, 2023 (To appear).

G. Cong and C. S. Jensen. Querying geo-textual data: Spatial keyword
queries and beyond. In SIGMOD, pages 2207-2212, 2016.

E. Delmelle, C. Dony, I. Casas, M. Jia, and W. Tang. Visualizing the
impact of space-time uncertainties on dengue fever patterns. Int. J.
Geogr. Inf. Sci., 28(5):1107-1127, 2014.

M. Deng, X. Yang, Y. Shi, J. Gong, Y. Liu, and H. Liu. A density-
based approach for detecting network-constrained clusters in spatial
point events. Int. J. Geogr. Inf. Sci., 33(3):466-488, 2019.

A. Eldawy and M. F. Mokbel. The era of big spatial data. Proc. VLDB
Endow., 10(12):1992-1995, 2017.

E. Gan and P. Bailis. Scalable kernel density classification via threshold-
based pruning. In SIGMOD, pages 945-959, 2017.

A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward
computational tractability. In SDM, pages 203-211, 2003.

A. G. Gray and A. W. Moore. Rapid evaluation of multiple density
models. In AISTATS, 2003.

X. Han, J. Wang, M. Zhang, and X. Wang. Using social media to mine
and analyze public opinion related to covid-19 in china. International
Journal of Environmental Research and Public Health, 17(8), 2020.

Y. Hu, F. Wang, C. Guin, and H. Zhu. A spatio-temporal kernel
density estimation framework for predictive crime hotspot mapping and
evaluation. Applied Geography, 99:89 — 97, 2018.

[34]

[35]

[36]

(371
[38]

[39]

[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]
(48]
[49]
[50]
[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

S. Kim, S. Jeong, I. Woo, Y. Jang, R. Maciejewski, and D. S. Ebert. Data
flow analysis and visualization for spatiotemporal statistical data without
trajectory information. /EEE Trans. Vis. Comput. Graph., 24(3):1287—
1300, 2018.

M. Krommyda and V. Kantere. Visualization systems for linked datasets.
In ICDE, pages 1790-1793, 2020.

P-F. Kuo, D. Lord, and T. D. Walden. Using geographical information
systems to organize police patrol routes effectively by grouping hotspots
of crash and crime data. Journal of Transport Geography, 30:138—148,
2013.

Y. Li, M. Abdel-Aty, J. Yuan, Z. Cheng, and J. Lu. Analyzing
traffic violation behavior at urban intersections: A spatio-temporal kernel
density estimation approach using automated enforcement system data.
Accident Analysis & Prevention, 141:105509, 2020.

Q. Liu, Y. Shen, and L. Chen. Lhist: Towards learning multi-dimensional
histogram for massive spatial data. In /ICDE, pages 1188-1199, 2021.
A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in
scatter plots. IEEE Trans. Vis. Comput. Graph., 19(9):1526-1538, 2013.
L. Micallef, G. Palmas, A. Oulasvirta, and T. Weinkauf. Towards
perceptual optimization of the visual design of scatterplots. IEEE Trans.
Vis. Comput. Graph., 23(6):1588-1599, 2017.

A. W. Moore. The anchors hierarchy: Using the triangle inequality to
survive high dimensional data. In UAI, pages 397-405, 2000.

F. Pedregosa, G. Varoquaux, A. Gramfort, and et al. Scikit-learn:
Machine learning in python. Journal of Machine Learning Research,
12:2825-2830, 2011.

J. M. Phillips. e-samples for kernels. In SODA, pages 1622—1632, 2013.
J. M. Phillips and W. M. Tai. Improved coresets for kernel density
estimates. In SODA, pages 2718-2727, 2018.

J. M. Phillips and W. M. Tai. Near-optimal coresets of kernel density
estimates. In SOCG, pages 66:1-66:13, 2018.

S. Rakshit, A. Baddeley, and G. Nair. Efficient code for second order
analysis of events on a linear network. Journal of Statistical Software,
Articles, 90(1):1-37, 2019.

A. Ristea, M. A. Boni, B. Resch, M. S. Gerber, and M. Leitner. Spatial
crime distribution and prediction for sporting events using social media.
Int. J. Geogr. Inf. Sci., 34(9):1708-1739, 2020.

I. Sabek and M. F. Mokbel. Machine learning meets big spatial data.
Proc. VLDB Endow., 12(12):1982-1985, 2019.

E. Saule, D. Panchananam, A. Hohl, W. Tang, and E. Delmelle. Parallel
space-time kernel density estimation. In /CPP, pages 483-492, 2017.
D. Scott.  Multivariate Density Estimation: Theory, Practice, and
Visualization. Wiley, 1992.

N. Tang, E. Wu, and G. Li. Towards democratizing relational data
visualization. In SIGMOD, pages 2025-2030, 2019.

C. Wang, H. Yu, and K. Ma. Importance-driven time-varying data
visualization. IEEE Trans. Vis. Comput. Graph., 14(6):1547-1554, 2008.
Z. Wang, C. Ginzler, and L. T. Waser. Assessing structural changes
at the forest edge using kernel density estimation. Forest Ecology and
Management, 456:117639, 2020.

K. Xie, K. Ozbay, A. Kurkcu, and H. Yang. Analysis of traffic crashes
involving pedestrians using big data: Investigation of contributing factors
and identification of hotspots. Risk Analysis, 37(8):1459-1476, 2017.
Z. Xie and J. Yan. Kernel density estimation of traffic accidents in a
network space. Computers, Environment and Urban Systems, 32(5):396
— 406, 2008.

Z. Xie and J. Yan. Detecting traffic accident clusters with network kernel
density estimation and local spatial statistics: an integrated approach.
Journal of Transport Geography, 31:64 — 71, 2013.

L. Xu, S. Zhao, S. S. Chen, C. Yu, and B. Lei. Analysis of arable
land distribution around human settlements in the riparian area of Lake
Tanganyika in Africa. Applied Geography, 125:102344, 2020.

H. Yu, P. Liu, J. Chen, and H. Wang. Comparative analysis of the
spatial analysis methods for hotspot identification. Accident Analysis &
Prevention, 66:80 — 88, 2014.

J. Yu and M. Sarwat. Geospatial data management in Apache Spark: A
tutorial. In ICDE, pages 2060-2063, 2019.

Y. Zheng, J. Jestes, J. M. Phillips, and F. Li. Quality and efficiency
for kernel density estimates in large data. In SIGMOD, pages 433-444,
2013.

Y. Zheng and J. M. Phillips. Loo error and bandwidth selection for
kernel density estimates of large data. In SIGKDD, pages 1533-1542,
2015.



