
HFGNN: Efficient Graph Neural Networks using
Hub-Fringe Structures

Pak Lon Ip
SKL of Internet of Things for Smart City

University of Macau
Macau SAR, China

paklonip@um.edu.mo

Shenghui Zhang
SKL of Internet of Things for Smart City

University of Macau
Macau SAR, China

zhang.shenghui@connect.um.edu.mo

Xuekai Wei
SKL of Internet of Things for Smart City

University of Macau
Macau SAR, China

xuekaiwei@um.edu.mo

Tsz Nam Chan
College of Computer Science and Software Engineering

Shenzhen University
Shenzhen, China

edisonchan@szu.edu.cn

Leong Hou U
SKL of Internet of Things for Smart City

University of Macau
Macau SAR, China
ryanlhu@um.edu.mo

Abstract—Existing message passing-based and transformer-
based graph neural networks (GNNs) cannot satisfy requirements
for learning representative graph embeddings due to restricted
receptive fields, redundant message passing, and reliance on fixed
aggregations. These methods face scalability and expressivity
limitations from intractable exponential growth or quadratic
complexity, restricting interaction ranges and information cover-
age across large graphs. Motivated by the analysis of long-range
graph structures, we introduce a novel Graph Neural Network
called Hub-Fringe Graph Neural Network (HFGNN). Our Hub-
Fringe structure, drawing inspiration from the graph indexing
technique known as Hub Labeling, offers a straightforward and
effective approach for learning scalable graph representations
while ensuring comprehensive coverage of information. HFGNN
leverages this structure to enable selective propagation of relevant
embeddings through a carefully designed message function.
Theoretical analysis is presented to show the expressivity and
scalability of the proposed method. Empirically, HFGNN exceeds
standard GNNs on tasks including classification and regression,
especially for large, long-range graphs where scalability and
coverage matter. Ablation studies further confirm the benefits of
our hub-fringe based graph neural network, including improved
expressivity and scalability. The source codes is available at
https://github.com/nick12340/HFGNN.

Index Terms—Hub-Fringe, Graph Neural Networks, Expres-
sivity, Indexing structure

I. INTRODUCTION

Graph neural networks (GNNs) provide a powerful frame-
work for learning structural and relational representations of
nodes in graphs. The expressiveness of GNNs stems from
their ability to efficiently aggregate neighborhood information
for each node. These have been extensively used in many

This work was supported by the Science and Technology Development Fund
Macau SAR (0003/2023/RIC, 0052/2023/RIA1, 0031/2022/A, 001/2024/SKL
for SKL-IOTSC), the Research Grant of University of Macau (MYRG2022-
00252-FST), the National Natural Science Foundation of China under Grant
No. 62202401, Shenzhen-Hong Kong-Macau Science and Technology Pro-
gram Category C (SGDX20230821095159012), and Wuyi University joint
Research Fund (2021WGALH14). This work was performed in part at SICC
which is supported by SKL-IOTSC, University of Macau.

application domains to learn node embeddings that capture the
structural and relational information in graphs, including social
network analysis [1], recommendation systems [2], citation
network analysis [3], and life science [4].

Two main GNN training methods are commonly used,
which are the message passing [5] and the transformer-
based [6], [7] approaches. The message passing approach
iteratively aggregates messages (features) for each node from
its neighbors to update its embedding in order to propagate
information across the graph. The transformer-based approach
applies the self-attention mechanism from transformers to
learn node embeddings based on the contextual information
of the entire graph. Both approaches aim to provide rich
representations of all nodes in the graph to support various
downstream tasks.

To learn the representation of each node by the message
passing-based approach, the core idea is to iteratively obtain
the information from its neighbors, e.g., r-hop neighbors
(r = 3 for the red dashed circle in Figure 1). By setting r
to be the diameter of the graph, this approach can fully obtain
both the node and edge information of this graph for each node
in order to increase the expressivity of the representation. De-
spite ensuring that information from each node is thoroughly
considered, the message passing-based approach necessitates
r iterations to effectively learn representations, with each
iteration requiring the computation of messages for every edge
in the graph E. This process may not be deemed efficient for
large-scale (or long-range) graphs with a high diameter. To
address this issue, research studies [8], [9], [10] combine the
message passing-based approach with sampling and clustering
techniques to improve efficiency. However, these solutions
may not fully capture complete information for each node,
potentially reducing the expressivity of the representation.

Another approach is to use transformers to learn node
embeddings, without message passing. The core idea is to
apply multi-head self-attention, allowing each node to obtain

151

2024 IEEE International Conference on Data Mining (ICDM)

2374-8486/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDM59182.2024.00022

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(IC
DM

) |
 9

79
-8

-3
31

5-
06

68
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
DM

59
18

2.
20

24
.0

00
22

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 27,2025 at 07:38:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: While expanding the number of hops in a GNN
poses challenges for the receptive field to encompass all
nodes in the graph (red dashed circle), our method overcomes
this limitation by achieving complete coverage through the
partitioning of the graph into a Hub-Fringe structure.

information from all other nodes in the graph. Unlike message
passing, the transformer strategy avoids the iterative process,
but it requires O(|V |2) space to store the self-attention matrix,
which limits its efficiency to large graphs. Additionally, it does
not explicitly model the edge information (graph structure),
relying solely on node co-occurrence for learning embeddings,
which restricts its expressivity in capturing structural roles and
properties of nodes. These issues constrain its performance
from explicitly modeling edges between nodes and propagat-
ing information in a more structured way for applications that
require capturing fine-grained structural node properties.

Hence, we ask a question in this paper. Can we develop
a new GNN structure that provides a highly expressive yet
efficient solution? To provide an affirmative answer to this
question. We first propose a new perspective on graph learning
problems by formulating the concept of coverage for graph
learning tasks and then discuss the expressivity and efficiency
issues of existing graph learning methods. Considering the
pros and cons of existing methods, we propose a hub-fringe
structure (see Figure 1) that aims to achieve high expressivity
and high efficiency. Our hub-fringe structure draws inspiration
from a graph indexing technique [11] commonly employed
for efficient answering of shortest path queries on very large-
scale graphs. A two-stage learning framework is then proposed
based on the hub-fringe structure. The innovative approach we
have employed in our research brings several notable benefits
that set it apart from previous studies in the field as illustrated
in Table I. (1) Our approach employs full coverage of node
features, where each node on graph can obtain sufficient
information from any its reachable neighbor. (2) We take into
account the modeling of path features along different hubs,
which leads to enhanced expressive capabilities compared
to solely considering a single shortest path. For example,
in a social network, we can learn about shared interests
by analyzing the relationships between users and common
follow celebrities. (3) Our method can obtain exact positional
information (due to the shortest path information) whereas

previous approaches can only yield approximate information.
(4) Lastly, our approach offers relatively lower complexity
compared with existing approaches due to the two-stage (hub-
fringe) learning framework.

In the rest of this paper, we present a fresh perspective
on graph learning problems by introducing the concept of
information coverage for graph learning tasks in Section II-A.
We then provide a comprehensive review of classic graph
learning techniques in Section II-B, emphasizing the chal-
lenges pertaining to expressivity and efficiency. We present
the hub-fringe structure in Section III-A, followed by an ex-
planation of how we employ the hub labeling technique as the
hub-fringe structure in Section III-B. The proposed method,
HFGNN, is then introduced in Section III-C. A theoretical
analysis of our method is presented in Section III-D, followed
by an evaluation of empirical results in Section IV. Lastly, we
conclude this paper in Section V.

II. PRELIMINARIES AND RELATED WORK

A. Information Coverage

With the growing popularity of GNNs, capturing long-range
interactions is crucial for various practical tasks, particularly
those involving large graphs or long chain structures [12].
For instance, the chemical property of a molecule [13], [14]
depends on the combination of atoms situated on opposite
sides. To quantify the extent of expressive power in modeling
long-range correlations in graphs, we assess the information
coverage provided by graph neural networks using the concept
called receptive field in deep learning, defined as the input size
that produces a feature.

In graph learning, receptive field refers to the number
of graph nodes contributing to the feature generation pro-
cess [15], [16], [17]. For example, in a message passing-based
GNN, the receptive field encompasses the 2-hop neighbors
when the model iterates twice to compute node embeddings.
We claim a receptive field is full for a node u in a graph
G (Proposition 1) if the learning process covers all nodes
reachable from u in G.

Proposition 1 (Information Coverage). The embedding rep-
resentation of node u is considered to achieve information
coverage if it incorporates context information from all of its
neighboring nodes that are reachable via any simple path.
Mathematically, we define this as follows:

zzzu = τ(V[u],X[u]) (1)

where V[u] represents the induced node set that can be reached
from node u in graph G. The embedding function, denoted as
τ , maps each node v in V[u] along with its relevant features
X[u] to a representation.

As a remark, there are two representative types of graph
features for X[u], which are path feature and topological
feature, The path feature is often collected along the message
path during the process of message passing in GNN. The
task of finding all paths among a pair of nodes in a graph
is known to be a computationally expensive problem that

152

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 27,2025 at 07:38:28 UTC from IEEE Xplore. Restrictions apply.

Properties Message passing-based GNN Transformer-based GNN HFGNN
Node features local neighborhood full cover full cover (Section III-D)
Path features neighborhood edges the shortest path multi shortest hub paths (Section III-C3)
Positional information n/a approximate exact (Section III-C2)
Learning framework iterative message passing self attention collect and distribute (Section III-C1)
Computational complexity O(r|V |d2 + r|E|d) O(|V |d2 +m|V |2d) O(|V |d2 + `|V |d) (Section III-D)

TABLE I: Comparison of the properties of different GNN architectures

requires exponential complexity. However, a specific subset
of paths, such as the shortest path, only requires a polynomial
cost. Besides, the topological features are employed to comple-
ment the structure information as feature enhancements. As an
example, the topological feature may include the information
that specifies the absolute position of a node inside the graph.
It has been shown that models that use distances between
nodes as features can provide more expressive power than the
1-WL algorithm [18].

B. Expressivity and Efficiency

Existing GNN methods often encounter practical limitations
that hinder their effectiveness. As the scale of graphs increases,
the computational demands and memory requirements of these
methods become impractical [19]. This presents issues with
both expressivity and efficiency. Increasing the expressive
power of graph models requires considering more nodes and
additional features, resulting in higher computational com-
plexity. As a consequence, this increased complexity presents
efficiency challenges for the model.

In this section, we conduct an analysis of two representative
graph learning approaches to better illustrate the relationship
between expressivity and efficiency.

(a) A 2-layer message passing
can cover all information in 2-
hop neighborhood of the root
node in red.

(b) Sampling sacrifices complete-
ness (v5, v11 not sampled) but
increases the coverage range (3-
hop layer).

Fig. 2: An illustration of multi-hop message passing.
Message passing-based GNNs. The representative studies
in this category include GCN [20], GraphSage [5], Deep-
erGNN [21], etc. As shown in Figure 2a, according to Propo-
sition 1, to learn the representation of a node u with complete
neighborhood information, the model should be able to receive
information from other nodes at a distance of r, where r
indicates the maximum hop distance from u to any nodes in
the graph. We should at least stack the layers (the depth of the
model) up to r, which results in a computation cost of |E| · r.
To allow GNNs to be used on large graphs, a practical solution

is to sample partial messages from the r-hop neighbors as
shown in Figure 2b, which plays a trade-off between com-
putation resources and information coverage. Although many
subgraph sampling techniques, such as neighbor sampling [5],
layer sampling [22], and sub-graph sampling [8], have been
proposed to tackle the neighbor explosion issue, all these
approaches still encounter a certain degree of expressivity loss.

Fig. 3: Each attention head in a self-attention transformer
model covers all nodes, causing the model to be costly.

Transformer-based GNNs. The representative studies
in this category include SAN [23], GraphTrans [24],
Graphormer [25], etc. The self-attention module of a
transformer possesses a global receptive field that allows each
input token to attend to and process the representation of
information at any position; thus, each node in the graph can
attend to all other nodes in this model.

According to Proposition 1, graph learning should encom-
pass not only the features of the nodes but also the topological
patterns within the graph to provide additional information.
Previous studies [26], [25], [27], [28] share the same intuition
and have attempted to explicitly encode the correlated topolog-
ical information for each node to supplement the topological
structures and positional encoding as a feature enhancement.
Graphormer [26] is one of the transformer-based models
that guarantee the information coverage (Proposition 1). It
explicitly encodes all edge encoding that encodes all edge
features along the shortest path between each pair of nodes.

As the number of graph nodes increases, these methods
encounter a quadratic growth in training time and space
complexity, resulting in a complexity of O(|V |2). Besides,
the design of multi-head attention [29] allows the model to
simultaneously focus on various aspects of the input sequence,
enabling it to capture greater nuance and complexity in the
data. However, existing transformers on graph [25], [23], [24]
do not fully leverage this characteristic, as all the heads receive
inputs from all the nodes (see Figure 3).

153

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 27,2025 at 07:38:28 UTC from IEEE Xplore. Restrictions apply.

Several attempts have been made to address the limitations
of full attention models and explore linear-time attention
approaches. Notably, BigBird [30] and Performer [31] have
sought to approximate full attention by employing sparse at-
tention or lower-dimensional matrices. Performers [31] utilize
a softmax kernel to approximate attention computation, but
this approach often results in a loss of accuracy. Additionally,
BigBird [30] was originally designed for sequential inputs, and
it faces challenges in effectively generalizing to non-sequential
inputs such as graphs. As a result, when applied to graph
data in GraphGPS[25], its performance tends to deteriorate
(see Table III, V). Exphormer [32] addressed this challenge
by introducing modifications tailored to graph inputs, incor-
porating local attention that utilizes the graph’s edge-defined
local connectivity. However, Exphormer sacrifices the ability
to achieve complete information coverage.

Summary. To the best of our knowledge, no existing method
successfully addresses both the information coverage (expres-
sivity) and the computational complexity (efficiency) chal-
lenges simultaneously. This drawback motivates us to develop
a novel approach to achieve both objectives. We assert that
a robust method should possess the potential for expressive
power, enabling capturing long-range interactions (for expres-
sivity) while maintaining reasonable complexity for computing
and graph embeddings (for efficiency). It is crucial for such
a method to operate within the limitations of available GPU
memory and computational resources, ensuring practical fea-
sibility in real-world applications.

III. HUB-FRINGE GRAPH NEURAL NETWORK

A. Hub-Fringe Structure

Fig. 4: Hub nodes facilitate the transmission of long range
messages. In this case, v1 obtains the message from v11 by
utilizing two hub nodes, v2 and v10, as intermediaries.

One approach to alleviate the complexity of multi-head
attention is through utilizing sparse attention mechanisms [31].
It motivates us to allow different attention heads to focus
more selectively on various parts of the graph. We expect
that the attention head will initially focus on localized in-
formation and then progressively transition to incorporating
global information, rather than distributing attention equally
among all nodes from the outset. To achieve this division
strategy, we employ representative nodes in the graph as hub
nodes and designate their neighboring nodes as the fringe (see
Figure 4). By adopting this approach, we can significantly

reduce computational costs, as the attention mechanism only
needs to consider a small local neighborhood surrounding each
hub rather than the entire graph. Their respective hub nodes
initially collect the fringe messages, ensuring that each hub-
fringe patch contains partial graph information.

A hub node should hold a significant position within the
graph structure, facilitating the aggregation of information
from its fringe nodes. In the context of graph learning, node
properties such as degree can be used to identify the graph hub.
For instance, celebrities with many followers can be treated
as hubs in a social network, while in a citation network, a
groundbreaking paper can be identified by its citation degree.
Note that a hub may also serve as the fringe of another hub.

Properties of hub-fringe structure. In addition to selection
criteria for hubs, the hub-fringe structure should satisfy certain
properties to ensure the efficient recomposition of the full
receptive field. These properties guarantee that our model
achieves the desired information coverage and preserves the
necessary relationships between nodes.

(1) Full receptive field. Every graph node must be a fringe
of at least one hub-fringe structure. Therefore, the union of
the fringe set of the hub-fringe structure should be equivalent
to the graph node set V . This property guarantees that the
hub-fringe patches encompass all nodes in the graph to obtain
complete information coverage.

(2) Highly concentrated features. We argue that concen-
trating topological features is crucial, as features tend to
experience information decay during a long message passing
process. By facilitating messages from the fringe to the hubs
along the shortest paths, we can mitigate this decay and
preserve important information [33]. This concept aligns with
certain transformer-based solutions, such as Graphormer [26],
which ensures that edges along the shortest path between each
pair of nodes are retained.

(3) Low redundancy. The issue of information redundancy
has been discussed in recent works, such as [33], [34], [35],
where it is highlighted that redundancy message passing can
lead to over-squashing issue. Thus, the selection of the hub
aim to minimize redundancy in the fringe nodes, ensuring that
each hub captures unique information from the graph.

B. Bridging Graph Learning and Indexing

In this study, we introduce a novel approach that incor-
porates indexing techniques from graph query answering to
construct the hub-fringe structure, aiming to fulfill the afore-
mentioned properties. Graph query answering and graph learn-
ing share a common objective of accomplishing tasks with
minimal resource utilization. While graph query answering
focuses on ensuring query correctness, graph learning aims
to achieve learning efficiency, such as information coverage.

Specifically, we construct the hub-fringe structure using the
Hub Labeling (HL) technique [11]. HL is a graph indexing
technique that optimizes shortest path-finding algorithms, trad-
ing space for time compared to Dijkstra’s algorithm [36].

154

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 27,2025 at 07:38:28 UTC from IEEE Xplore. Restrictions apply.

Definition III.1 (Hub Label). For each node v ∈ V , we define
the hub label of a node L(v) as a set of pairs (h, dist), where
dist is the distance from v to the hub vertex h.

The fundamental idea behind hub labeling is to pre-compute
and store the information about the distances between each
vertex and a small set of hubs, nodes with a high degree and
many connections to other vertices in the graph. The distance
information is stored in a data structure, namely a hub label.
To compute the result of the shortest path query from source
u to destination v, a sort-merge join is performed between its
hub labels L(u) and L(v). The purpose of the sort-merge join
is to find a common hub in the shortest path from u to v that
is labeled by both u and v.

Property 1 (2-hop cover). For any pair of reachable nodes
u, v ∈ V of G(V,E), there exists at least one common hub h ∈
SPu→v in both label sets, L(u),L(v), such that the shortest
path SPu→v is the result of merging SPu→h and SPh→v .

dist(SPu→v) = min
h∈L(u)∩L(v)

{dist(SPu→h) + dist(SPh→v)}
(2)

In order to ensure the correctness of the shortest path
finding, which guarantees the ability to reply to distance
requests for every pair of nodes, the hub label must satisfy
the 2-hop cover property (see Property 1). An optimization
goal in hub label construction is typically to minimize the
number of labels, i.e., min

∑
v∈V |L(v)|. In [37], it shows

that finding a hub labeling with the minimum total label size,
while maintaining the 2-hop cover property, is a formulation
of the NP-hard weighted set-cover problem [38]. Similar to
the idea of solving set-cover problems, many greedy heuristic
construction algorithms have been shown to provide small
index size in practice [38], [39], [40]. Note that the index size
only impacts the query processing time without compromising
the accuracy of the shortest path calculation.

Construction of hub labeling. To construct a hub labeling
index [39], we follow a sequential process where each node
in the graph propagates its distance information based on
a predefined node order O. This algorithm initially starts
from the highest-order node and iteratively (1) propagates
the distance information to its neighbors and (2) assigns the
label from the higher-order node u to its lower-order neighbor
v. During the propagation of hub node u, the propagation
is stopped at node v if the existing label sets L(u) ∩ L(v)
are already sufficient for computing the shortest path between
nodes u and v. This ensures that redundant labels are pruned
properly during the propagation process.

Figure 5 illustrates how the construction works. Note that
the importance orders O = {v10, v2, v3, ...} is given by the
degree of the nodes in this example. The propagation process
starts with the first hub v10, and the corresponding distance
information is added to the label set of nodes with lower
ranks. We use small yellow diamonds attached to all nodes to
represent the hub v10. For instance, a new hub label (v10, 3) is
inserted into L(v6) as the distance from v10 to v6 is 3. During

Fig. 5: L(v1) has three labels from v10, v2, and v3. To learn
the embedding zzzv1

, we set v10, v2, and v3 as hubs, and their
corresponding fringe nodes are highlighted with colors.

the propagation of the next hub v2, it stops at v10 since existing
label sets L(v2)∩L(v10) are sufficient to answer the shortest
path distance between v2 and v10.

Following the construction of the hub labeling, the node
information can now be propagated from node v11 to node
v1 through the intermediate hubs v10 and v2 via a two-step
process. One of these hub paths is guaranteed to be the shortest
path, as indicated by Property 1. Moreover, it is noteworthy
that every node in the graph has the potential to serve as an
intermediate hub for other nodes. The determination of which
nodes act as hubs primarily relies on the importance order O
and the underlying structure of the graph.

From hub labeling to hub-fringe structure. The hub labeling
has the following properties that correspond to the three
properties described in Section III-A which make it a good
candidate to produce the hub-fringe structure.

(1) 2-hop cover. This property from HL ensures that every
shortest path between any node pairs must pass through at
least one common hub node. This is crucial for maintaining
information completeness.

(2) Shortest path dedication. The main objective of the
HL index is to efficiently answer shortest path queries by
eliminating unnecessary paths and ensuring that the label
set contains the shortest and most unique paths. Such direct
message passing enhances the concentration of features and
facilitates more effective information exchange between nodes.

(3) Minimality. One common objective in HL algorithms is
to minimize redundant information, i.e., minimizing the label
size. These algorithms naturally prioritize the preservation of
nodes commonly chosen as hubs by many node pairs. This not
only ensures the selection of effective hubs but also reduces
the level of redundancy in the label set.

C. Hub-Fringe based Graph Neural Network

1) Hub-Fringe based Learning Framework: To provide a
clear contrast between our model and the other frameworks
for graph learning, we present graph learning in a simplified
matrix multiplication format. The r-layer message passing
methods on node neighbors can be written as follows.

Z = ρ(AN ...(AN (ANXW1)W2)...Wr) (3)

155

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 27,2025 at 07:38:28 UTC from IEEE Xplore. Restrictions apply.

where AN is the neighborhood adjacency matrix of a graph,
typically provided by the graph of the dataset. The message
passing-based methods involve r iterations of matrix multi-
plication, enabling a node to receive messages from r-hop
neighbors (full receptive field). The variable X denotes the
relevant feature of nodes.

The transformer-based methods only require one step since
the self-attention affinity matrix AV encompasses all pairs of
nodes.

Z = ρ(AV XW) (4)

In contrast to these two classic methods, the hub-fringe
structure allows us to achieve Proposition 1 with only a two-
stage model as illustrated in Figure 6. The matrix multiplica-
tion format of the process can be presented as follows.

Z = ρ(

H�F︷ ︸︸ ︷
AT

L(ALXW1︸ ︷︷ ︸
F�H

)W2) (5)

where AL indicates the affinity matrix of hub labels (see
Definition III.1), i.e.,

AL(u, h) =

{
dist, if (h, dist) ∈ L(u)
0, otherwise

For clarity, the mathematical equations of the two-stage pro-
cess are shown in message passing fashion as follows. Note
that F(h) and H(f) are the set representations of the hub
label L. Specifically, H(f) includes all the hub nodes in L(f),
whereas F(h) consists of all the fringe nodes labeled with h
in L(f).

Fringe � Hub

Message: mk
f→h =φ(zzzk−1h , zzzk−1f),∀f ∈ F(h)

Update: zzzkh =ρ(zzzk−1h ,⊕({mk
f→h})

Hub � Fringe

Message: mk
h→f =φ(zzzk−1f , zzzk−1h),∀h ∈ H(f)

Update: zzzkf =ρ(zzzk−1f ,⊕({mk
h→f}))

(6)

Fig. 6: Hubs are considered transit hubs of the message
passing. Each of these hubs first collects the messages from
fringes and updates its representation, and then distributes the
message back to its fringes.

Collect and Distribute. As depicted in Equation 5, these two
stages are a pair of mirroring processes. In the first stage,
hubs collect information from its fringes using AL, while in
the second stage, hubs distribute the aggregated information
to its fringes based on the transposed matrix AT

L .
In the first stage, messages are collected in a message

passing fashion. Hubs collect and aggregate messages from
all their fringes to update their embeddings. This is achieved
by computing an attention-based message embedding for each
fringe node via the message function and then aggregating
them using a differentiable and permutation-invariant function.

In the second stage, the representation of the hubs contains
all the information from their fringes (upper part of Figure 6).
It is worth noting that the union of the fringe set is equivalent
to the node set due to the 2-hop cover property (Property 1).
In the subsequent stage, a mirror process is used to update the
representation of the fringes, which distributes the messages
from the hubs back to the fringes. Each fringe will receive
messages from its hub set and update its representation, similar
to how the previous stage updated the hubs. The pseudocode
of our framework is given in Algorithm 1.

Algorithm 1 Collect and Distribute framework of HFGNN
1: Input: Hub set H; Fringe set F ; Shortest path encoding SPE;

Hub label based Positional encoding PEHL; Node input features
{xv}; Message computation function φ; Message aggregation
functions ⊕; Non-linearity update function σ; Network Layer
l ∈ [1,K];

2: Output: Embedding zv for all v ∈ V .
3: Hidden layer embedding zzzv ← xv;
4: for l = 1,. . . ,K do
5: for f ∈ F ,∀h ∈ H(f) do . Message collecting
6: φf→h = φ(zzzf , zzzh, SPEf→h, PE

HL
f , PEHL

h);
7: for h ∈ H do
8: φh = ⊕({φf→h, ∀f ∈ F(h)});
9: zzzh = ρ(zzzh, φh);

10: for h ∈ H, ∀f ∈ F(h) do . Message distributing
11: φh→f = φ(zzzh, zzzf , SPEh→f , PE

HL
f , PEHL

h);
12: for f ∈ F do
13: φf = ⊕({φh→f , ∀h ∈ H(f)});
14: zzzf = ρ(zzzf , φf);

Similar to other GNN frameworks [25], our approach also
considers several features to enhance expressive power, in-
cluding (1) node features obtained from data, (2) relative
distances of the node pairs, (3) HL-based positional encoding
that reflects exact position of each node on the graph denoted
as PEHL, and (4) shortest path encoding which contains the
edge features from each node pair denoted as SPE. While
the first two features can be directly obtained from the input
data and query answering in HL, we will focus on the latter
two features in the following subsections.

2) HL-based Positional Encoding, PEHL: According to
the observation in JK-Net [41], the message passing pro-
cess differs depending on its position and neighborhood
characteristics. This idea has been used in DEGNN [18],
Graphormer [26], GraphiT [7], PEG layer [42], and SAN [23].

156

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 27,2025 at 07:38:28 UTC from IEEE Xplore. Restrictions apply.

The basic idea behind PE in graph transformers is similar
to that in natural language processing tasks. A fixed vector
is added to the embedding of each node in the graph, which
encodes the node position on the graph. In this work, we use
the hub label to form an encoding vector for each node. For a
node u in the graph, its positional encoding is represented by
a vector with a length equal to the total number of hubs in the
hub-fringe structure. The vector records the distance from u to
the labeling hub of L(u). Since we intend to map close nodes
on the graph to similar embeddings, a simple normalization is
applied to map it to a [0, 1] range.

PEHL
u (h) =

{
1

1+dist , if (h, dist) ∈ L(u),
0, otherwise

(7)

Similar to the sort-merge join used in answering shortest
path query, the relative distance can be calculated as follows:

dist(SPu−>v) = min(PEHL
u

◦−1
+ PEHL

v

◦−1
)− 2

where ·◦−1 is the Hadamard inverse operator [43] that indi-
cates applying a reciprocal to each vector element.
PEHL captures the information of relative network distance

between two nodes with the concrete position on the graph,
providing additional expressive power[28]. In addition, PEHL

takes a relatively low complexity due to the HL techniques.
3) Shortest Path Encoding, SPE: Edge encoding has been

widely used to enhance the performance of node embed-
ding [44], [26], [25]. Our SPE method works by extracting
the shortest paths between pairs of nodes in the graph using our
hub labeling structure and then encoding these paths as fixed-
sized feature vectors. Each path is represented as a sequence
of node and edge features, where the node features correspond
to the nodes along the path, and the edge features correspond
to the edges connecting them.

To effectively incorporate edge features into our graph
neural network, we apply a trainable weight when computing
the message between node pairs to sum up all the edge features
along the shortest path. Note that we only compute and store
the shortest path between the hub and the fringe nodes, which
can be extracted from hub labeling. This ensures that the SPE
process remains efficient across a variety of graphs.

It is important to highlight that our method effectively
models the dependencies between node pairs by leveraging the
messages from their common labeled hubs. Property 1 ensures
that there is always at least one hub positioned along the
shortest path connecting the node pairs. This guarantees that
our method incorporates at least one SPE of the shortest path
between the node pair. Moreover, our approach goes beyond
considering a single shortest path by incorporating multiple
paths that bypass different hubs. This multi-path perspective
provides a richer and more comprehensive understanding of
the connectivity between nodes. By considering various paths
and their associated hubs, our method captures multiple per-
spectives and factors into the learning process. This allows us
to gain deeper insights into the intricate connectivity patterns
and relationships within the graph.

D. Analysis

Information coverage. We formally show that hub-fringe
structure can achieve comprehensive information coverage.

Lemma. HL-based hub-fringe fulfills Proposition 1.

Proof. As per the 2-hop cover property (Property 1), it is
important to note that the union of the fringe set F from the
hub set H of node v is equivalent to the entire node set V .
Mathematically,

V ≡ F = ∪h∈H(v)F(h),∀v ∈ V (8)

This secures that the HL-based hub-fringe structure is reach-
able to all nodes. Besides, the hub-fringe structure identifies
at least one shortest path between any pair of nodes, thus
representing their relationship, as stated in Property 1.

Expressivity. With reduced complexity, it becomes more fea-
sible to incorporate additional feature encodings. Moreover,
the tuning space for the hyper parameter is expanded such as
hidden size, number of layer and others, allowing for a wider
range of choices. In addition to ensuring information coverage
from all reachable nodes, our hub-fringe structure empowers
the learning process to concentrate on highly informative fea-
tures, facilitating effective learning while reducing redundancy
in the information.

Over-squashing. As discussed in Topping et al. [33], refers
to the distortion in message passing caused by the repeated
involvement of numerous nodes during the long-range message
propagation process. The main conclusion is that, as the
distance between two nodes increases, the issues of distortion
and over-squashing become more pronounced. One approach
to mitigate over-squashing is to connect all nodes in the
graph. However, this would result in the loss of topological
information, which is crucial for message passing in clas-
sification tasks, especially for prediction tasks that heavily
rely on remote interactions. Achieving a balance between
reducing over-squashing and preserving topological informa-
tion presents a significant challenge in graph representation
learning. The message passing steps of HFGNN between
two nodes are always fixed at two hops, which is much
shorter than that of traditional message passing-based GNNs.
This proximity between nodes results in a significantly lower
distortion compared to neighboring message passing methods.

Efficiency. In message passing-based GNNs, each node col-
lects messages from its one-hop neighbors N , and the affili-
ation of every node is represented by a matrix AN which is
the adjacency matrix provided by the graph data. To achieve
information coverage (Proposition 1), this process is repeated
r times, where r indicates the length of the full receptive field.
On the other hand, transformer-based GNNs collect messages
from all nodes in one step, and the affiliation is represented by
a full matrix AV . Given the hub-fringe structure, each node
u collects messages from its hub labels L(u). Achieving full
information coverage requires running the message passing
exactly two times, as supported by the 2-hop cover property.

157

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 27,2025 at 07:38:28 UTC from IEEE Xplore. Restrictions apply.

The sparsity between the matrices of message passing,
hub-fringe, and transformer can be generally summarized as
follows: |AN | ≤ |AL| ≤ |AV |, with AV being the superset
of the other two matrices (see Equation 8). It is crucial
to emphasize that the computation in the learning process
is sensitive to the sparsity since we utilize sparse matrix
calculations in the learning framework. Interestingly, in our
experimental studies, the sparsity of AL in “COCO-SP” is even
better than that of AN , showcasing the hub-fringe structure’s
advantage. Furthermore, the numbers of iterations for these
three approaches are as follows: r (message passing) > 2 (hub-
fringe) > 1 (transformer).

Obviously, the hub-fringe structure excels when the average
size of the hub label set (AL) is small. As reported in numerous
studies [40], [39], the label size ` of a node is much smaller
than |V | in practice. For instance, there are typically hundreds
of labels per node, even in large-scale graphs containing
millions of nodes [39].

Complexity Analysis. We denote the number of nodes as |V |,
the number of edges as |E|, the hub label size per node as
`, the size of feature encoding vectors as d, the number of
attention heads as m.

The computation of a GNN consists of two parts: (1)
the linear transformation on the input embeddings and (2)
the message-aggregation framework to generate the output
embeddings. The first part is a fundamental operation in neural
networks that aligns the dimensions of different features for
each node so the complexity is O(|V |d2). The second part
involves learning the relationship between the input embed-
dings and output embeddings through the interaction of graph
nodes. In this work, our main contribution lies in reducing the
complexity of the second part.

In HFGNN, each hub collects information from all corre-
sponding fringes and subsequently distributes the aggregated
information back to all fringes. It is important to highlight
that attention, similar to transformer-based GNNs, is employed
to learn the embedding relationship between a hub and its
fringes. Considering that the total number of hubs is bounded
by |V | and the number of fringes per hub is bounded by `,
the complexity of our HFGNN approach is O(`|V |d), as it
only runs the same learning process twice. Note that a space
with a complexity of O(`|V |) is required to store the sparse
hub-fringe relationship. The overall complexity of the system
can be expressed as the sum of two components, resulting in
a total complexity of O(|V |d2 + `|V |d).

IV. EXPERIMENTS

This section evaluates the effectiveness of the HFGNN for
graph tasks, and our implementation is developed based on
the GraphGym [45] module of Pytorch-Geometric [46]. A
computation resource is a single machine with an NVIDIA
RTX3090 GPU with 24GB GPU memory and an AMD
Ryzen Threadripper 3960X CPU with 24 cores and 64GB
RAM. The source codes and relevant settings can be found
at https://github.com/nick12340/HFGNN. The evaluation of
baselines in this study encompasses a range of popular GNN

methods, categorized into message-passing based models and
transformer-based models.

A brief description of these benchmark datasets is intro-
duced as follows. Table II summarizes the statistics of the
datasets. It should be noted that the indexing time refers
to the cumulative duration required for building the hub
labeling for each individual graph inside a given dataset. It
has been demonstrated that the computing cost associated with
preprocessing the graph index is relatively inconspicuous in
comparison to the time required for model training.

TABLE II: Statistics and description of the evaluated datasets

Dataset |G| |V | |E| ` indexing (sec.) prediction
ZINC 12,000 23.2 24.9 4.64 46.4 graph

PATTERN 10,000 118.9 6,098.9 29.13 428.4 inductive node
CLUSTER 10,000 117.2 4,303.9 25.03 394.2 inductive node

ogbg-molhiv 41,127 25.5 27.5 5.10 11.4 graph
ogbg-molpcba 437,929 26 28.1 4.93 127.1 graph

ogbg-ppa 158,100 243.4 2,266.1 15.85 1532.5 graph
ogbg-code2 452,741 125.2 124.2 4.84 499.3 graph

PascalVOC-SP 11,355 479.4 2,710.5 20.727 566.5 inductive node
COCO-SP 123,286 476.9 2,693.7 21.32 6194.4 inductive node

Peptides-func 15,535 150.94 307.3 17.83 258.9 graph
Peptides-struct 15,535 150.94 307.3 17.83 258.9 graph

The selected baselines from the message-passing based
category include GCN [20], GAT [6], GIN [47], PAN [48], and
DiffPool-GCN [9]. The transformer-based baselines consist
of SAN [23], Graphormer [26], GraphGPS [25], Exphormer
[32], and GraphTrans [24].

The best results are reported from the original papers for
some methods, as some of the hyperparameter configurations
in previous works are not publicly available. In the tables, we
highlight the methods with a star * to indicate that the results
are from the original papers. We also include information
about the hardware used in all the experiments, including the
available GPU memory, to provide a reference for the readers.

TABLE III: GNN Benchmark performance(mean ± std%. Best
results are colored in first, second, third).

Method Hardware ZINC PATTERN CLUSTER
MAE ↓ Accuracy ↑ Accuracy ↑

*GCN 1 × V100 32GB 0.367±0.011 71.892±0.334 68.498±0.976
*GAT 1 × V100 32GB 0.384±0.007 78.271±0.186 70.587±0.447
*GIN 1 × V100 32GB 0.526±0.051 85.387±0.136 64.716±1.553
*PAN 1 × V100 32GB 0.188±0.004 - -
*SAN 1 × V100, 32GB 0.139±0.006 86.581±0.037 76.691±0.650

*Graphormer 8 × V100 32GB 0.122±0.006 - -
*GraphGPS 1 × A100 40GB 0.070±0.004 86.685±0.059 78.016±0.180

GraphGPS(BigBird) 1 × 3090 24GB 0.130±0.012 86.049±0.014 76.827±0.180
*Exphormer 1 × A100 40GB - 86.734±0.008 78.070±0.037

HFGNN 1 × 3090 24GB 0.090±0.001 86.821±0.026 78.863±0.032

A. Experimental Analysis

Table III compares the performance of graph neural net-
works on three datasets: ZINC, PATTERN, and CLUSTER.
The evaluation metrics are mean absolute error (MAE) for
ZINC and accuracy for PATTERN and CLUSTER. The pro-
posed HFGNN model achieves a low Mean Absolute Error
(MAE) of 0.09 on the ZINC dataset, surpassing all baseline
methods except GraphGPS, which achieves a slightly better
MAE of 0.070. For PATTERN and CLUSTER, HFGNN

158

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 27,2025 at 07:38:28 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Open Graph Benchmark performance(mean ±
std%. Best results are colored in first, second, third).

Method ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2
AUROC ↑ Avg. Precision ↑ Accuracy ↑ F1 score ↑

*GCN 0.759±0.006 0.232±0.003 0.690±0.007 0.159±0.002
*GAT 0.761±0.003 0.217±0.008 0.684±0.009 0.157±0.001
*GIN 0.771±0.015 0.270±0.002 0.704±0.011 0.158±0.003
*PAN 0.774±0.009 0.262±0.006 0.768±0.012 0.164±0.022

DiffPool-GCN 0.766±0.009 0.244±0.008 0.725±0.008 0.144±0.004
*SAN 0.779±0.247 0.277±0.004 - -

*GraphTrans - 0.276±0.003 - 0.183±0.002
*Graphormer 0.805±0.530 0.314±0.320 - -
*GraphGPS 0.788±0.010 0.291±0.003 0.802±0.003 0.189±0.002

HFGNN 0.797±0.046 0.295±0.004 0.788±0.005 0.192±0.001

TABLE V: Long Range Graph Benchmark performance(mean
± std%. Best results are colored in first, second, third).

Method PascalVOC-SP COCO-SP Peptides-func Peptides-struct
F1 score ↑ F1 score ↑ AP ↑ MAE ↓

*GCN 0.127±0.006 0.084±0.001 0.593±0.002 0.350±0.0011
*GatedGCN 0.287±0.022 0.264±0.005 0.586±0.008 0.342±0.001

*SAN 0.323±0.004 0.259±0.016 0.638±0.012 0.268±0.004
*TransF.+LapPE 0.269±0.010 0.262±0.003 0.633±0.013 0.253±0.002

*GraphGPS 0.375±0.011 0.341±0.004 0.654±0.004 0.250±0.001
GraphGPS(BigBird) 0.276±0.007 0.263±0.007 0.585±0.008 0.253±0.003

*Exphormer 0.398±0.004 0.346±0.001 0.656±0.004 0.248±0.001
HFGNN 0.385±0.027 0.313±0.008 0.668±0.003 0.247±0.002

achieves the highest accuracy of 86.821% and 78.863%, re-
spectively, surpassing all models. Compared to more resource-
intensive models, such as Graphormer, which runs on mul-
tiple high-end GPUs, HFGNN efficiently achieves better or
comparable results on a single consumer-grade GPU. The
proposed hub-fringe framework demonstrates its advantages
by efficiently learning graph representations while ensuring
sufficient information coverage.

Furthermore, Table IV presents a comparison of GNN
models on four Open Graph Benchmark datasets. On ogbg-
molhiv, Graphormer achieves the best AUROC of 0.805.
However, the proposed HFGNN obtains a competitive AUROC
of 0.797, surpassing all baseline GNNs. For ogbg-molpcba,
Graphormer again shows the top average precision of 0.314,
while HFGNN attains a close second at 0.295, outperforming
other models. On ogbg-ppa, HFGNN obtains an accuracy of
0.788, surpassing strong baselines like GIN and PAN. Finally,
for ogbg-code2, HFGNN achieves the highest F1 score of
0.192, significantly exceeding GNN baselines and GraphTrans.
It is worth noting that the resources required by Graphormer
on larger datasets are not detailed in [26], even though it shows
top performance on chemical datasets. The resource efficiency
of HFGNN is advantageous in handling larger graphs.

We also analyze the performance over long-range graph
benchmarks shown in Table V. Again, HFGNN outperforms
or remains competitive with state-of-the-art techniques on
these long-range graph tasks. On PascalVOC-SP, the pro-
posed HFGNN achieves an F1 score of 0.385, significantly
outperforming prior works, including SAN, Transformer +
LapPE, and GraphGPS. For COCO-SP, Exphormer shows the
best F1 of 0.341, but HFGNN obtains a competitive 0.313,
exceeding other methods. For Peptides-func, HFGNN has the

top AP of 0.668, while Exphormer achieves a close second at
0.656, surpassing SAN and Transformer baselines. Finally, on
Peptides-struct, HFGNN attains the lowest MAE of 0.247.

V. CONCLUSION

This work introduces a novel graph learning framework
called HFGNN, based on the hub-fringe graph structure.
Experimental results demonstrate that HFGNN represents an
advancement in graph neural networks. In particular, HFGNN
addresses GNN expressivity and efficiency challenges by
introducing an efficient message passing framework for graph
learning that employs the hub-labeling method. By attaining
full coverage in message passing, HFGNN enables more
expressive graph representations, resulting in more accurate
predictions. The theoretical and empirical analysis of the
proposed model demonstrates its ability to outperform other
state-of-the-art models, indicating its potential as a fundamen-
tal solution to the fundamental problem of expressivity and
efficiency in graph neural networks. HFGNN has a wide range
of potential applications, and its ability to manage large-scale
graphs efficiently makes it a promising solution for various
real-world problems. In the future, we will investigate how the
structure-driven GNN performs in configurations with large
memory, enabling training of large-scale models.

REFERENCES

[1] J. Leskovec and J. Mcauley, “Learning to discover social circles in ego
networks,” Advances in neural information processing systems, vol. 25,
2012.

[2] W. Fan, Y. Ma, Q. Li, Y. He, Y. E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019,
L. Liu, R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley, R. Baeza-
Yates, and L. Zia, Eds. ACM, 2019, pp. 417–426.

[3] L. Waikhom and R. Patgiri, “A survey of graph neural networks in
various learning paradigms: methods, applications, and challenges,”
Artif. Intell. Rev., vol. 56, no. 7, pp. 6295–6364, 2023.

[4] Z. Wang, V. N. Ioannidis, H. Rangwala, T. Arai, R. Brand, M. Li, and
Y. Nakayama, “Graph neural networks in life sciences: Opportunities
and solutions,” in Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, ser. KDD ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 4834–4835.

[5] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, Eds., 2017, pp. 1024–1034.

[6] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

[7] G. Mialon, D. Chen, M. Selosse, and J. Mairal, “Graphit: Encoding
graph structure in transformers,” CoRR, vol. abs/2106.05667, 2021.

[8] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. K. Prasanna,
“Graphsaint: Graph sampling based inductive learning method,” in 8th
International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[9] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
Advances in neural information processing systems, vol. 31, 2018.

159

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 27,2025 at 07:38:28 UTC from IEEE Xplore. Restrictions apply.

[10] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 257–266.

[11] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and
distance queries via 2-hop labels,” SIAM Journal on Computing, vol. 32,
no. 5, pp. 1338–1355, 2003.

[12] V. P. Dwivedi, L. Rampášek, M. Galkin, A. Parviz, G. Wolf, A. T. Luu,
and D. Beaini, “Long range graph benchmark,” Advances in Neural
Information Processing Systems, vol. 35, pp. 22 326–22 340, 2022.

[13] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld,
“Quantum chemistry structures and properties of 134 kilo molecules,”
Scientific data, vol. 1, no. 1, pp. 1–7, 2014.

[14] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263–1272.

[15] U. Alon and E. Yahav, “On the bottleneck of graph neural networks and
its practical implications,” in 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[16] X. Ma, J. Wang, H. Chen, and G. Song, “Improving graph neural
networks with structural adaptive receptive fields,” in Proceedings of
the Web Conference 2021, 2021, pp. 2438–2447.

[17] Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song, and Y. Qi, “Geniepath:
Graph neural networks with adaptive receptive paths,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 4424–4431.

[18] P. Li, Y. Wang, H. Wang, and J. Leskovec, “Distance encoding: Design
provably more powerful neural networks for graph representation learn-
ing,” Advances in Neural Information Processing Systems, vol. 33, pp.
4465–4478, 2020.

[19] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec, “OGB-
LSC: A large-scale challenge for machine learning on graphs,” in
Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021,
December 2021, virtual, J. Vanschoren and S. Yeung, Eds., 2021.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017.

[21] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 338–348.

[22] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-dependent
importance sampling for training deep and large graph convolutional
networks,” Advances in neural information processing systems, vol. 32,
2019.

[23] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and P. Tossou,
“Rethinking graph transformers with spectral attention,” Advances in
Neural Information Processing Systems, vol. 34, pp. 21 618–21 629,
2021.

[24] Z. Wu, P. Jain, M. Wright, A. Mirhoseini, J. E. Gonzalez, and I. Stoica,
“Representing long-range context for graph neural networks with global
attention,” Advances in Neural Information Processing Systems, vol. 34,
pp. 13 266–13 279, 2021.

[25] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and
D. Beaini, “Recipe for a general, powerful, scalable graph transformer,”
Advances in Neural Information Processing Systems, vol. 35, pp.
14 501–14 515, 2022.

[26] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu,
“Do transformers really perform badly for graph representation?” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 28 877–
28 888, 2021.

[27] D. Chen, L. O’Bray, and K. Borgwardt, “Structure-aware transformer for
graph representation learning,” in International Conference on Machine
Learning. PMLR, 2022, pp. 3469–3489.

[28] V. P. Dwivedi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson, “Graph
neural networks with learnable structural and positional representations,”
in The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[30] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti,
S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang et al., “Big bird:
Transformers for longer sequences,” Advances in neural information
processing systems, vol. 33, pp. 17 283–17 297, 2020.

[31] K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane,
T. Sarlós, P. Hawkins, J. Q. Davis, A. Mohiuddin, L. Kaiser, D. B.
Belanger, L. J. Colwell, and A. Weller, “Rethinking attention with per-
formers,” in 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

[32] H. Shirzad, A. Velingker, B. Venkatachalam, D. J. Sutherland, and A. K.
Sinop, “Exphormer: Sparse transformers for graphs,” in International
Conference on Machine Learning. PMLR, 2023, pp. 31 613–31 632.

[33] J. Topping, F. D. Giovanni, B. P. Chamberlain, X. Dong, and M. M.
Bronstein, “Understanding over-squashing and bottlenecks on graphs
via curvature,” in The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net, 2022.

[34] R. Chen, S. Zhang, L. H. U, and Y. Li, “Redundancy-free message
passing for graph neural networks,” in NeurIPS, 2022.

[35] Q. Sun, J. Li, B. Yang, X. Fu, H. Peng, and S. Y. Philip, “Self-
organization preserved graph structure learning with principle of relevant
information,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, no. 4, 2023, pp. 4643–4651.

[36] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, pp. 269–271, 1959.

[37] M. Babenko, A. V. Goldberg, H. Kaplan, R. Savchenko, and M. Weller,
“On the complexity of hub labeling,” in Mathematical Foundations of
Computer Science 2015: 40th International Symposium, MFCS 2015,
Milan, Italy, August 24-28, 2015, Proceedings, Part II 40. Springer,
2015, pp. 62–74.

[38] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Hierar-
chical hub labelings for shortest paths,” in Algorithms–ESA 2012: 20th
Annual European Symposium, Ljubljana, Slovenia, September 10-12,
2012. Proceedings 20. Springer, 2012, pp. 24–35.

[39] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data, 2013, pp. 349–360.

[40] Y. Li, L. H. U, M. L. Yiu, and N. M. Kou, “An experimental study on
hub labeling based shortest path algorithms,” Proceedings of the VLDB
Endowment, vol. 11, no. 4, pp. 445–457, 2017.

[41] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in International Conference on Machine Learning. PMLR, 2018, pp.
5453–5462.

[42] H. Wang, H. Yin, M. Zhang, and P. Li, “Equivariant and stable positional
encoding for more powerful graph neural networks,” in The Tenth
International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[43] R. Reams, “Hadamard inverses, square roots and products of almost
semidefinite matrices,” Linear Algebra and its Applications, vol. 288,
pp. 35–43, 1999.

[44] D. Mesquita, A. Souza, and S. Kaski, “Rethinking pooling in graph
neural networks,” Advances in Neural Information Processing Systems,
vol. 33, pp. 2220–2231, 2020.

[45] J. You, R. Ying, and J. Leskovec, “Design space for graph neural
networks,” in NeurIPS, 2020.

[46] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[47] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[48] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Principal
neighbourhood aggregation for graph nets,” Advances in Neural Infor-
mation Processing Systems, vol. 33, pp. 13 260–13 271, 2020.

160

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 27,2025 at 07:38:28 UTC from IEEE Xplore. Restrictions apply.

