
GREAT: Generalized Reservoir Sampling based Triangle
Counting Estimation over Streaming Graphs

Siyue Wu

College of Computer Science and

Software Engineering

Shenzhen University

wusiyue1229@gmail.com

Dingming Wu
∗

College of Computer Science and

Software Engineering

Shenzhen University

dingming@szu.edu.cn

Sinhong Cheuk

College of Computer Science and

Software Engineering

Shenzhen University

sinhongcheuk@gmail.com

Tsz Nam Chan

College of Computer Science and

Software Engineering

Shenzhen University

edisonchan@szu.edu.cn

Kezhong Lu

College of Computer Science and

Software Engineering

Shenzhen University

kzlu@szu.edu.cn

ABSTRACT

The number of triangles of a streaming graph is a crucial metric

with various applications, such as network evolution analysis, com-

munity detection, and anomaly detection. A practical solution for

triangle counting in streaming graphs is the sampling-based ap-

proximation. Although a lot of research efforts have been devoted

to the fixed-sized memory based algorithms, they suffer from the

accuracy and the efficiency issues. To tackle these issues, we first

propose the generalized reservoir sampling (GRS), which stores less

edges for reducing the computational cost and can still generate

uniformly random edge sample in the streaming graph. Then, we

propose the GREAT algorithm based on GRS for efficient and accu-

rate triangle counting estimation. To further improve the estimation

accuracy, we propose the GREAT+ algorithm for considering the

dynamic timestamp interval distribution in real-world streaming

graphs so that triangles with short and long timestamp intervals

will be sampled following the ground-truth distribution. Extensive

evaluations on real datasets demonstrate the efficiency and the

accuracy of our algorithms. The relative error of our algorithm

GREAT+ is significantly (an order of magnitude) better than the

competitors.

PVLDB Reference Format:

Siyue Wu, Dingming Wu, Sinhong Cheuk, Tsz Nam Chan, and Kezhong Lu.

GREAT: Generalized Reservoir Sampling based Triangle Counting

Estimation over Streaming Graphs. PVLDB, 18(7): 2031 - 2043, 2025.

doi:10.14778/3734839.3734842

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/sinhong-cheuk/GREAT.

∗
Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.

doi:10.14778/3734839.3734842

1 INTRODUCTION

Graph is an important data structure that is used to represent re-

lationships or connections between objects [46]. A triangle is a

substructure within a graph consisting of three vertices connected

by three edges. A streaming graph a.k.a. an edge stream [2] is an un-

bounded sequence of edges where each edge arrives at a timestamp.

The arrived edges form a dynamic graph. Real-world applications

of triangle counting estimation over streaming graphs span several

domains. In social networks, users interact dynamically, and tri-

angle counting estimation can help detect real-time communities

based on the evolving graph structure [24, 37]. In financial net-

works, triangle counting estimation can help identify fraud rings or

money laundering by detecting clusters of suspicious transactions

or individuals that form triangles [29].

In the streaming graph setting, it is infeasible to store the whole

graph since the edge stream is unlimited. Moreover, there is no

knowledge about the future edges in the stream. Therefore, exist-

ing exact algorithms [3, 6, 10] and matrix-based approximation

algorithms [41] are not applicable in the streaming graph setting

since they require random accesses to the whole graph and need to

traverse the graph in a specific way.

A practical solution for triangle counting in streaming graphs is

the sampling-based approximation. It tries to find triangles formed

by the sampled edges from the stream and estimates the triangle

count based on the probability of discovered triangles. As reviewed

in Section 6, existing sampling-based approximation algorithms

can be classified into two categories, i.e., fixed probability (FP)

based algorithms [1, 27, 36] and fixed-sized memory (FM) based

algorithms [18, 39, 50]. The type of FP-based algorithms has the

limitations that (i) the space complexity is high since it is related

to the number 𝑚 of the edges in the stream and (ii) it requires

some knowledge of the whole edge stream to determine the sam-

pling probability, which may be unavailable. Thus, the FP-based

algorithms are not suitable for the streaming graph setting. A lot

of research efforts have been devoted to the type of FM-based al-

gorithms that only needs a reservoir of fixed-size 𝑘 (𝑘 ≪ 𝑚) in
memory. However, existing FM-based algorithms face challenges

related to either accuracy or efficiency.

2031

https://doi.org/10.14778/3734839.3734842
https://github.com/sinhong-cheuk/GREAT
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3734839.3734842
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Accuracy issue.We highlight the limitations of existing FM-based

algorithms in terms of accuracy. Most of the algorithms guaran-

tee unbiased estimations, while StreamingTriangle [16] is biased.

FURL [18] uses a hash function to get sampled edges that is deter-

ministic. Its accuracy strongly relies on the hash function, which

is low in our experiments. Algorithms TRI𝐸ST-B [38, 39],TRI𝐸ST-

I [38, 39], and WRS [23, 31] are the state-of-the-art FM-based al-

gorithms for triangle counting estimation in streaming graphs.

Previous studies [38, 50] have proven that TRI𝐸ST-I is more accu-

rate than TRI𝐸ST-B. Recent studies [32–34, 48, 49, 49, 51, 51, 53, 54]

extend TRI𝐸ST-I and TRI𝐸ST-B to address duplicated edges, deleted

edges in the stream, or to adapt to a distributed setting. Thus, the

variances of the estimated results of these algorithms are the same

as TRI𝐸ST-B and TRI𝐸ST-I.

However, the best known algorithms TRI𝐸ST-I and WRS ignore

the dynamic timestamp intervals of the triangles in real-world

streaming graphs and their sampled triangles do not follow the

real timestamp interval distribution. The timestamp interval of a

triangle is defined as the difference between the timestamp of the

last arrival edge and that of the first arrival edge in the triangle.

Figure 1 shows how the timestamp intervals of triangles change

with timestamps in real datasets Wikipedia and Yahoo (used in our

experiments). Both axes are divided into 10 sub-ranges. Each colored

square represents the number of triangles that are discovered in

a sub-range of x-axis and whose timestamp intervals fall in a sub-

range of y-axis. In this figure, we have three observations. (𝑂1)

The timestamp interval distribution of the triangles is non-uniform,

which means that at any timestamp, the number of discovered

triangles varies with different timestamp intervals. (𝑂2) At any

timestamp, the triangles discovered are not always biased to short

timestamp intervals. (𝑂3) The timestamp interval distribution varies

over time. TRI𝐸ST-I generates a uniform sample at each timestamp,

which is inconsistent with observations 𝑂1 and 𝑂3, resulting in

inaccurate estimations. Algorithm WRS has the assumption that

the timestamp intervals of the majority of triangles are short and

tends to discover triangles with short timestamp intervals, which is

not consistent with observations 𝑂2 and 𝑂3, so that WRS produces

inaccurate estimations.

To accurately estimate triangle counts in real-world streaming

graphs, a desired algorithm should be able to generate edge samples

such that the discovered triangles follow a dynamic, non-uniform

timestamp interval distribution.

Efficiency issue. We show the shortcomings of existing FM-based

estimation algorithms in terms of amortized time complexity. The

FM-based estimation algorithms are developed based on the reser-

voir sampling [20], where the sampled edges are stored in a reser-

voir. The computational cost of this type of algorithm is dominated

by updating the sample graph in the reservoir and counting trian-

gles in the sample graph. As shown in Table 1, FURL-0B [18] has the

highest amortized time complexity of updating the sample graph,

whereas the other algorithms are fast. Regarding the amortized time

complexity of counting triangles, RFES-I [50] is the slowest. The

reservoirs in algorithms TRI𝐸ST-I, WRS, and TS-triangle are always

full, so that the computational cost of counting triangles is propor-

tional to the reservoir size 𝑘 , which is a considerable cost. Although

StreamingTriangle and TRI𝐸ST-B only need to count triangles when

an edge is sampled, leading to amortized time complexity less than

𝑂 (𝑘), their estimations are inaccurate [38]. Therefore, compared

with the triangle counting cost, the sample graph updating cost can

be ignored. The amortized time complexity of triangle counting in

the best known accurate algorithms TRI𝐸ST-I and WRS is 𝑂 (𝑘).

(a) Wikipedia. (b) Yahoo.

Figure 1: Dynamic timestamp intervals of triangles.

Table 1: Amortized time complexity of FM-based algorithms

Algorithm

Amortized time complexity per edge (𝑢, 𝑣).
Counting Updating

StreamingTriangle [16] 𝑂

(
(𝑘 + 𝑠𝑤) · 𝑝 (𝑠)𝑢𝑣

)
𝑂

(
𝑝
(𝑠)
𝑢𝑣

)
TRI𝐸ST-B [38] 𝑂

(
𝑘 · 𝑝 (𝑠)𝑢𝑣

)
𝑂

(
𝑝
(𝑠)
𝑢𝑣

)
TRI𝐸ST-I [38] 𝑂 (𝑘) 𝑂

(
𝑝
(𝑠)
𝑢𝑣

)
WRS [23, 31] 𝑂 (𝑘) 𝑂 (1)

TS-triangle [53] 𝑂 (𝑘) 𝑂

(
𝑝
(𝑠)
𝑢𝑣

)
FURL-0B [18] 𝑂 (𝑘) 𝑂

(
𝑝
(𝑠)
𝑢𝑣 · 𝑘 · log𝑘

)
RFES-I [50] 𝑂

(
(1 + 2 · 𝑑𝑎𝑣𝑔) · 𝑘

)
𝑂

(
𝑝
(𝑠)
𝑢𝑣

)
GREAT𝐼 𝑂

((
1 − 𝛼

2

)
· 𝑘 − 1

2

)
𝑂

(
𝑝
(𝑠)
𝑢𝑣

)
GREAT𝐼 𝐼 𝑂 (𝑘 − C) 𝑂

(
𝑝
(𝑠)
𝑢𝑣

)
GREAT+ 𝑂 (𝑘 − C) 𝑂

(
𝑝
(𝑠)
𝑢𝑣

)
★ 𝑠𝑤 is the reservoir size for storing wedges. 𝑘 is the reservoir size. davg is the

average degree of the vertices in the reservoir. 𝑝
(𝑠)
𝑢𝑣 is the sampling probability

of edge (𝑢, 𝑣) . 𝛼 is the edge removing probability. C is a positive value.

To tackle the accuracy and the efficiency issues, we first propose

the generalized reservoir sampling (GRS) that stores less edges

(controlled by parameter 𝛼) in the reservoir so that the triangle

counting cost is reduced by searching in a smaller sample graph.

Next, we propose the Generalized Reservoir Sampling based Tri-

angle counting estimation algorithm (GREAT) that belongs to the

type of FM-based algorithms. It adopts the GRS and has a new way

for computing the probabilities of discovered triangles, so that it

is efficient and can still provide unbiased estimations. Compared

with the best known FM-based algorithms, our GREAT algorithm

has lower amortized time complexity (see Section 3.3) and smaller

variance (see Section 3.4).

By considering the dynamic timestamp intervals of the triangles

in real-world streaming graphs, shown in Figure 1, we propose

algorithm GREAT+ that improves GREAT by an adaptive strategy.

The proposed adaptive strategy automatically adjusts the parameter

𝛼 in GREAT, so that the timestamp interval distribution of the sam-

pled triangles in the reservoir can adapt to the evolving timestamp

interval distribution of the streaming graph. In this way, triangles

2032

with short and long timestamp intervals will be sampled following

the ground-truth distribution, resulting in accurate estimations. Ac-

cording to our accuracy analysis, the simplified variance ofGREAT+

is smaller than that of GREAT.
Finally, extensive experiments are conducted on four real-world

streaming graph datasets to evaluate the performance of our al-

gorithms. The results demonstrate that the proposed algorithm,

GREAT, achieves comparable accuracy to its competitors while

delivering a significant improvement in efficiency. Moreover, the

relative error of our enhanced algorithm, GREAT+, is an order of

magnitude lower than that of the competitors, while maintaining

efficiency on par with state-of-the-art algorithms.

The rest of the paper is organized as follows: Section 2 presents

the problem definition and the framework of triangle counting

estimation. Section 3 proposes the generalized reservoir sampling

based triangle counting estimation algorithm GREAT. Section 4

improves the GREAT algorithm by an adaptive strategy. Extensive

evaluations are conducted in Section 5. Section 6 reviews relevant

algorithms and we conclude in Section 7.

2 PRELIMINARIES

2.1 Problem Definition

Streaming graph [2] (a.k.a. edge stream) Σ is an unbounded se-

quence of edges, where each edge (𝑢, 𝑣) has a unique timestamp

𝑡uv that is the arrival time of edge (𝑢, 𝑣). At any timestamp 𝑡 , graph

𝐺 (𝑡) consists of the edges arrived at timestamp 𝑡 and earlier. Let

unordered triple (𝑢, 𝑣,𝑤) denote the triangle formed by three edges

(𝑢, 𝑣), (𝑣,𝑤), (𝑢,𝑤). Let Δ be the set of all triangles in graph 𝐺 (𝑡)

and Δ𝑢 be the set of all local triangles of any vertex 𝑢 in graph𝐺 (𝑡) .
Problem statement.We study the problem of estimating the global

and the local triangle counts in insertion-only streaming graphs,

following the assumptions in the most prior work [23, 26, 39] that

(i) the unbounded edge stream cannot be physically stored, (ii)

memory budget is limited, i.e., at most 𝑘 edges can be stored in

memory, and (iii) the edge stream is processed in single pass, i.e.,

the edges is processed one by one in the order of their arrival time.

Formally,

• Given: an edge stream Σ and a memory budget 𝑘 .

• Estimate: at any timestamp 𝑡 , the global triangle count 𝜏 and

the local triangle count 𝜏𝑢 of any vertex 𝑢 in graph 𝐺 (𝑡) .
• Goal: minimizing estimation errors.

Although we consider the insertion-only streaming graph in this

paper, the proposed algorithms can be easily extended to handle the

edge stream containing deleted and duplicated edges [33, 38, 45].

We leave this extension as the future work, due to space limitations.

2.2 Reservoir Sampling based Framework

Most existing triangle counting estimation algorithms [18, 32–

34, 36, 38, 45, 48–51, 53, 54] adopt traditional reservoir sampling [20]

since it satisfies the three assumptions in our problem statement

(Section 2.1) and can generate a uniformly random sample of the

edge stream. Figure 2 shows the reservoir sampling based frame-

work for triangle counting estimation. The framework processes the

edges from the input stream one by one and includes the following

two components:

Reservoir (fixed size)

...

A stream of edges

Edge sampling

Removing strategy

A
B

A
C

B
C

A

B C

Method I:
estimation
before
sampling

A

B C

Method II:
estimation
after
sampling

...

C-II:
triangle counting

estimation
C-I: reservoir sampling

Figure 2: Reservoir sampling based framework.

C-I: reservoir sampling. It adopts traditional reservoir sampling.

A reservoir 𝑆 that can store at most 𝑘 edges is maintained in mem-

ory. For edge (𝑢, 𝑣) that arrives at timestamp 𝑡uv , it is sampled

with probability 𝑘/𝑡uv . The sampled (selected) edges are stored in

the reservoir. When the reservoir is full, one random edge in the

reservoir is removed to free space for the next sampled edge. At

any timestamp, the edges in the reservoir construct a uniformly

random sample of all arrived edges. In other words, the edges in

the reservoir are not temporally biased.

C-II: triangle counting estimation. For each edge from the input

stream, we say one triangle is discovered, if it can form a triangle

with two edges in the reservoir. At any timestamp, global and local

triangle counts are estimated according to all the discovered trian-

gles so far and the corresponding triangle discovering probabilities.

In the literature, there are two methods of estimation. Method I

estimates triangle counts before edge sampling. It takes the cur-

rent edge into account no matter whether it will be stored in the

reservoir or not. In other words, the current edge may contribute

to discovered triangles even though it may not be selected in the

edge sampling process after. Method II estimates triangle counts

after edge sampling. In this way, only the edges sampled and stored

in the reservoir will contribute to discovered triangles.

Previous studies [38, 50] have proven that Method I is more accu-

rate thanMethod II. Therefore, our algorithms follow the framework

using Method I for triangle counting estimation.

3 GENERALIZED RESERVOIR SAMPLING

BASED TRIANGLE COUNTING ESTIMATION

As discussed before, existing reservoir sampling based triangle

counting estimation algorithms suffer from the efficiency and the ac-

curacy issues. To efficiently and accurately estimate triangle counts

in streaming graphs, we first propose the generalized reservoir sam-

pling (GRS) in this Section 3.1 that keeps less edges in the reservoir

for reducing the computational cost. Then, we propose a triangle

counting estimation algorithm based on GRS named GREAT in Sec-

tion 3.2. The analyses of amortized time complexity and accuracy

are provided in Sections 3.3 and 3.4, respectively.

3.1 Generalized Reservoir Sampling (GRS)

Recall that traditional reservoir sampling maintains a reservoir of

size 𝑘 and adopts the removing strategy that one random edge in

2033

the reservoir is removed when the reservoir is full. The proposed

generalized reservoir sampling (GRS) uses a new removing strategy

that the edges in the reservoir are removed with probability 𝛼 ,

1/𝑘 < 𝛼 < 1. GRS removes more than one edges when the reservoir

is full. Traditional reservoir sampling is a special case of GRS when

setting 𝛼 = 1/𝑘 (in this case, the expected number of edges removed

is 𝛼 ·𝑘 = 1). Since the average number of edges retained in the GRS

reservoir is lower than that in traditional reservoir sampling, the

computational cost of finding triangles for each incoming edge is

reduced.

Algorithm 1 GRS

Input: reservoir 𝑆 , edge (𝑢, 𝑣), round 𝑟 , edge counter 𝑡 .
1: if 𝑡 ≤ 𝑘 then ⊲ computational round 0.

2: Add edge (𝑢, 𝑣) to 𝑆 ;
3: 𝑝

(s)
uv ← 1; 𝑟uv ← 𝑟 ;

4: else ⊲ computational round 𝑟 (𝑟 > 0).
5: if 𝑆 is full then ⊲ The reservoir is full.

6: The edges in 𝑆 are removed with probability 𝛼 ;

7: 𝑟 ← 𝑟 + 1;
8: end if

9: Generate a random number 𝑝 ∈ (0, 1);
10: Compute 𝑝

(s)
uv ;

11: if 𝑝 < 𝑝
(s)
uv then

12: Add edge (𝑢, 𝑣) to 𝑆 ;
13: 𝑟uv = 𝑟 ;

14: end if

15: end if

We partition the computational process of GRS into several

rounds. Computational round 0 is the initial round in GRS, which

begins with an empty reservoir and concludes once the reservoir

is full. Computational round 𝑟 (> 0) starts at the end of round

𝑟 − 1, proceeds with edge removal operations, and ends once the

reservoir is refilled with sampled edges. Then, we define 𝑟uv as

the computational round in which edge (𝑢, 𝑣) arrives. Algorithm 1

shows the pseudo code of GRS. Lines 1–3 denote computational

round 0, where each arrived edge is sampled with probability 1.

Lines 5–8 detail the edge removal operations. Lines 9–14 illustrate

any computational round 𝑟 (> 0), where the sampling probability

of edge (𝑢, 𝑣) is set to 𝑝 (s)uv .

3.2 GRS based Triangle Counting Estimation

Algorithm GREAT
This section proposes the Generalized REservoir sAmpling based

Triangle counting estimation algorithm (GREAT) that estimates

global and local triangle counts based on GRS.

First, we introduce how to calculate the probabilities of the dis-

covered triangles in GRS in Lemma 3.1.

Lemma 3.1. Given an edge (𝑢, 𝑣) from the stream in computa-
tional round 𝑟 , the probability of discovering triangle (𝑢, 𝑣,𝑤) in GRS
is calculated as

𝑃uvw = 𝑝
(s)
uw · 𝑝

(s)
vw · (1 − 𝛼)2𝑟−𝑟uw−𝑟vw . (1)

Proof. According to GRS, edge (𝑢,𝑤) is sampled with probabil-

ity 𝑝
(s)
uw in computational round 𝑟uw . Then, in computational round

𝑟 (≥ 𝑟uw), the probability of edge (𝑢,𝑤) staying in the reservoir is

𝑝
(r)
uw = 𝑝

(s)
uw · (1 − 𝛼)𝑟−𝑟uw . (2)

Similarly, in computational round 𝑟 , the probability of edge (𝑣,𝑤)
staying in the reservoir is 𝑝

(r)
vw = 𝑝

(s)
vw · (1 − 𝛼)𝑟−𝑟vw . Hence, for

the current edge (𝑢, 𝑣) in computational round 𝑟 , the probability of

discovering triangle (𝑢, 𝑣,𝑤) formed by edge (𝑢, 𝑣) and two edges in
the reservoir is 𝑃uvw = 𝑝

(r)
uw ·𝑝

(r)
vw = 𝑝

(s)
uw ·𝑝

(s)
vw · (1−𝛼)2𝑟−𝑟uw−𝑟vw . □

Then, having the probability of each discovered triangle, the esti-

mated global and the estimated local triangle counts are calculated

as follows. Let Δ̂ be the set of discovered triangles and Δ̂𝑢 be the set

of discovered local triangles of vertex 𝑢. The global triangle count

is estimated as

𝜏 =
∑︁

(𝑢,𝑣,𝑤) ∈Δ̂

1

𝑃uvw
. (3)

The local triangle count of vertex 𝑢 is estimated as

𝜏𝑢 =
∑︁

(𝑢,𝑣,𝑤) ∈Δ̂𝑢

1

𝑃uvw
. (4)

Algorithm TriangleCountingEst (Algorithm 2) shows the pseudo

code of GRS based triangle counting estimation. In the reservoir,

each vertex 𝑢 has a hashset that stores the neighbors of 𝑢. It first

tries to find triangles formed by the given edge (𝑢, 𝑣) and two edges
in the reservoir, i.e., finding the common neighbors of vertices 𝑢

and 𝑣 in the reservoir (line 1). The size of the common neighbor

set𝑊 is the number of discovered triangles for edge (𝑢, 𝑣). Then,
the probability of each discovered triangle (𝑢, 𝑣,𝑤) is computed

according to Lemma 3.1 (line 3). In the end, according to Equations 3

and 4, the global the local triangle counts are updated using the

probabilities of the discovered triangles (lines 4–7).

Algorithm 2 TriangleCountingEst

Input: reservoir 𝑆 , edge (𝑢, 𝑣), round 𝑟 .
1: 𝑊 ← 𝑆.getNeighbor(𝑢) ∩ 𝑆.getNeighbor(𝑣);
2: for each vertex𝑤 ∈𝑊 do

3: 𝑃uvw = 𝑝
(𝑠)
uw · 𝑝

(𝑠)
vw · (1 − 𝛼)2𝑟−𝑟uw−𝑟vw ; ⊲ Lemma 3.1;

4: 𝜏𝑢 ← 𝜏𝑢 + 𝑝−1uvw ;
5: 𝜏𝑣 ← 𝜏𝑣 + 𝑝−1uvw ;
6: 𝜏𝑤 ← 𝜏𝑤 + 𝑝−1uvw ;
7: 𝜏 ← 𝜏 + 𝑝−1uvw ;
8: end for

Lately, the proposed algorithm (GREAT) follows the framework

in Figure 2, which uses Algorithm 1 in component C-I and Al-

gorithm 2 in component C-II. Following existing algorithms [30,

39, 50], GREAT adopts Method I that performs estimations before

edge sampling in the framework since this method has lower vari-

ances than Method II. Algorithm 3 shows the pseudo code of al-

gorithm GREAT. For each arrived edge (𝑢, 𝑣), GREAT first calls

TriangleCountingEst (Algorithm 2) that updates the estimated tri-

angle counts (line 6), and then callsGRS (Algorithm 1) that performs

edge sampling and maintains the reservoir (line 7).

In algorithm GREAT, we investigate the following two ways

(P-I and P-II) of calculating the edge sampling probability 𝑝
(s)
uv in

GRS, leading to two specialized algorithms: GREATI that employs

probability P-I and GREATII utilizes probability P-II. According

2034

Algorithm 3 GREAT

Input: an edge stream Σ, GRS parameter 𝛼 , a reservoir 𝑆 of size 𝑘 .

Output: the estimated global triangle count 𝜏 , the estimated local

triangle count 𝜏𝑢 of vertex 𝑢, ∀𝑢 ∈ 𝑉 .

1: 𝑆 ← ∅; 𝜏 ← 0; 𝜏𝑢 ← 0, ∀𝑢 ∈ 𝑉 ;

2: Edge counter 𝑡 ← 0;

3: computational round 𝑟 ← 0.

4: while the next edge (𝑢, 𝑣) from Σ do

5: 𝑡 ← 𝑡 + 1;
6: TriangleCountingEst(𝑆, (𝑢, 𝑣), 𝑟);
7: GRS(𝑆, (𝑢, 𝑣), 𝑟 , 𝑡);
8: end while

9: return 𝜏 and {𝜏𝑢 };

to Sections 3.3 and 3.4, GREATI is faster while GREATII is more

accurate.

P-I: 𝑝
(s)
uv = (1 − 𝛼)𝑟uv . This edge sampling probability has been

used in butterfly counting estimation [30]. We are the first to adopt

it for triangle counting estimation. Lemma 3.2 guarantees that if

adopting P-I, all the arrived edges stay in the reservoir with equal

probability. Thus, algorithmGREATI generates a uniformly random

sample of edge stream.

Lemma 3.2. If applying 𝑝 (s)uv = (1 − 𝛼)𝑟uv , in any computational
round 𝑟 , all the arrived edges stay in the reservoir with probability
(1 − 𝛼)𝑟 .

The proof is available in the supplementary material [47].

P-II: 𝑝
(s)
uv = 𝑘/𝑡𝑢𝑣 . Existing triangle counting estimation algo-

rithms [23, 39, 50] adopt this edge sampling probability. Lemma 3.3

shows that if adopting P-II, the probability of each arrived edge

staying in the reservoir is approximate to 𝑘/𝑡 . Thus, algorithm
GREATII generates an approximate uniformly random sample of

edge stream.

Lemma 3.3. Let 𝑝 (s)uv = 𝑘/𝑡𝑢𝑣 , in any computational round 𝑟 , 𝑡
be the number of arrived edges, and 𝑝 (𝑟)uv be the probability that any
arrived edge (𝑢, 𝑣) staying in the reservoir. If 𝛼 ≤ 0.7,���𝑝 (𝑟)uv − 𝑝∗

��� /𝑝∗ ≤ 1 − exp(−2𝛼), 𝑝∗ = 𝑘/𝑡 . (5)

The proof is available in the supplementary material [47].

3.3 Amortized Time Complexity

This section analyzes the amortized numbers of computational

operations of algorithms GREATI and GREATII . In both algorithms,

discovering triangles, i.e., finding the common neighbors of vertices

𝑢 and 𝑣 for each edge (𝑢, 𝑣) (line 1 in Algorithm 2), dominates the

computational cost. Thus, we proceed to derive the amortized time

complexities of these dominant parts in both algorithms.

Lemmas 3.4 and 3.6 show the expected numbers of edges arrived

in any computational round 𝑟 in algorithms GREAT𝐼 and GREATII ,
respectively. Lemmas 3.5 and 3.7 show the expected numbers of

edges arrived to put one sampled edge in the reservoir in algorithms

GREAT𝐼 and GREATII , respectively.

Lemma 3.4. In algorithm GREAT𝐼 , the expected number of edges
arrived in computational round 𝑟 is 𝑥 𝐼𝑟 = 𝛼 · 𝑘/(1 − 𝛼)𝑟 .

Lemma 3.5. In algorithm GREAT𝐼 , at the beginning of compu-
tational round 𝑟 , suppose that there are 𝑄 free slots in the reservoir
where each slot can store one edge. The expected number of edges
arrived to put one sampled edge in the 𝑖th slot is 𝑦𝐼

𝑟,𝑖
= 1/(1 − 𝛼)𝑟 .

Lemma 3.6. In algorithm GREATII , the expected number of edges
arrived in computational round 𝑟 is 𝑥 II𝑟 = (exp(𝛼) − 1) · exp((𝑟 − 1) ·
𝛼) · 𝑘 .

Lemma 3.7. In algorithm GREATII , at the beginning of compu-
tational round 𝑟 , suppose that there are 𝑄 free slots in the reservoir
where each slot can store one edge. The expected number of edges
arrived to put one sampled edge in the 𝑖th slot is

𝑦II𝑟,𝑖 = 𝑘 · exp (𝛼 · (𝑟 − 1)) ·
(
exp

(
1

𝑘

)
− 1

)
· exp

(
1

𝑘
· (𝑖 − 1)

)
.

The proofs of Lemmas 3.4–3.7 are available in the supplementary

material [47].

In algorithm GREATI , at the beginning of computational round

𝑟 , the expected number of empty slots in the reservoir is 𝛼 · 𝑘 .
Then, in this computational round, we expect that 𝑥 I𝑟 (Lemma 3.4)

edges arrive and 𝛼 ·𝑘 edges are sampled and stored in the reservoir.

According to Lemma 3.5, when finding the common neighbors of

the vertices for𝑦I
𝑟,𝑖

edges, (1−𝛼) ·𝑘 +𝑖−1 computational operations

are needed. Thus, for the arrived edges in computational round

𝑟 , the number of computational operations needed in algorithm

GREATI is

OP𝐼𝑟 =

𝛼 ·𝑘∑︁
𝑖=1

𝑦I𝑟,𝑖 · ((1 − 𝛼) · 𝑘 + 𝑖 − 1) =
2𝛼𝑘2 − 𝛼2𝑘2 − 𝛼𝑘

2 · (1 − 𝛼)𝑟 .

According to Lemma 3.4, algorithm GREATI processes 𝑥 𝐼𝑟 edges in
computational round 𝑟 . Thus, the amortized number of computa-

tional operations of GREATI is

OP𝐼𝑟
𝑥 𝐼𝑟

=

(
1 − 𝛼

2

)
𝑘 − 1

2

. (6)

Similarly, for the arrived edges in computational round 𝑟 , the

number of computational operations needed in algorithm GREATII

is

OP II𝑟 =

𝛼 ·𝑘∑︁
𝑖=1

𝑦II𝑟,𝑖 · ((1 − 𝛼) · 𝑘 + 𝑖 − 1)

= exp (𝛼 (𝑟 − 1))
(𝛼 + exp(𝛼) − 1) +

exp

(
1

𝑘

)
(1 − exp (𝛼))

exp

(
1

𝑘

)
− 1

 𝑘
2 .

According to Lemma 3.6, algorithm GREATII processes 𝑥 II𝑟 edges

in computational round 𝑟 . Thus, the amortized number of compu-

tational operations of GREATII is

OP II𝑟
𝑥 II𝑟

=

(
1 + 𝛼

exp (𝛼) − 1

)
𝑘 −

exp

(
1

𝑘

)
− 1

𝑘

exp

(
1

𝑘

)
− 1
≤ 𝑘 − C, (7)

where C =
exp(1𝑘)− 1

𝑘

exp(1𝑘)−1
> 1.

Summary. According to Equations 6 and 7, the amortized numbers

of computational operations of our algorithms are lower than that of

the competitor algorithms in Table 1. As 𝛼 increases, the amortized

2035

numbers of computational operations of our algorithms decrease.

Comparing Equations 6 and 7,GREATI is faster thanGREATII since
OP II𝑟
𝑥 II
𝑟

− OP I𝑟
𝑥 I
𝑟

> 0.

3.4 Accuracy Analysis

In this section, we analyze the accuracy of our algorithms and

compare our algorithms with two best known algorithms TRI𝐸ST-I

and WRS.

First, we prove that our algorithm provide unbiased estimations

for the global and the local triangle counts, shown in Lemma 3.8.

Lemma 3.8. In algorithm GREAT, Equations 3 and 4 return unbi-
ased estimations for the global and the local triangle counts, i.e.

E(𝜏) = 𝜏 and E(𝜏𝑢) = 𝜏𝑢 ,∀𝑢 ∈ 𝑉 .

Proof. Given edge stream Σ, at any timestamp 𝑡 , the edges

arrive no later than 𝑡 are called seen edges and the edges arrive

after 𝑡 are called unseen edges. Given any timestamp 𝑡 , let Δ be

the ground truth set of global triangles formed by seen edges and

𝜏 = |Δ| is the ground truth global triangle count. Next, we prove

that E(𝜏) = 𝜏 . Let 𝐼uvw be an indicator variable, such that

𝐼uvw =

{
1 if triangle (𝑢, 𝑣,𝑤) is discovered,
0 otherwise.

Then, we have that E(𝐼uvw) = 𝑃uvw × 1 + (1 − 𝑃uvw) × 0 = 𝑃uvw .

The expectation of the estimated global triangle count is

E(𝜏) = E
©­­«

∑︁
(𝑢,𝑣,𝑤) ∈Δ̂

1

𝑃uvw

ª®®¬ = E ©­«
∑︁

(𝑢,𝑣,𝑤) ∈Δ

𝐼uvw
𝑃uvw

ª®¬
=

∑︁
(𝑢,𝑣,𝑤) ∈Δ

E(𝐼uvw)
𝑃uvw

=
∑︁

(𝑢,𝑣,𝑤) ∈Δ

𝑃uvw
𝑃uvw

=
∑︁

(𝑢,𝑣,𝑤) ∈Δ
1 = 𝜏 .

Hence, 𝜏 computes unbiased estimation for the global triangle

count.

Similarly, we prove that 𝜏𝑢 ,∀𝑢 ∈ 𝑉 computes unbiased estima-

tion for the local triangle count. Given any timestamp 𝑡 , let Δ𝑢 be

the ground truth set of local triangles of vertex 𝑢 formed by seen

edges and 𝜏𝑢 = |Δ𝑢 | is the ground truth local triangle count of

vertex 𝑢.

E(𝜏𝑢) = E ©­«
∑︁

(𝑢,𝑣,𝑤) ∈Δ𝑢

𝐼uvw
𝑃uvw

ª®¬ =
∑︁

(𝑢,𝑣,𝑤) ∈Δ𝑢

E(𝐼uvw)
𝑃uvw

= 𝜏𝑢 .

□

Given that our algorithm and most of existing reservoir sampling

based triangle estimation algorithms are unbiased [18, 31, 39], we

proceed to compare the variances of the estimated global and the

estimated local triangle counts in different algorithms.

Following previous work [23], we utilize the simplified variance

˜Var (𝜏) to evaluate the accuracy of different algorithms because

it is has been shown that traditional variance and the simplified

variance are strongly correlated (𝑅2 > 0.99) in real-world graphs.

˜Var (𝜏) =
∑︁
𝑋 ∈Δ

Var
(
𝐼𝑋

𝑃𝑋

)
=

∑︁
𝑋 ∈Δ

(
1

𝑃𝑋
− 1

)
, (8)

where 𝜏 is an estimated triangle count, 𝑋 is any triangle in the

ground truth triangle set Δ, 𝐼𝑋 is a variable that indicates whether

triangle 𝑋 is discovered or not, and 𝑃𝑋 is the probability of discov-

ering triangle 𝑋 .

Given a triangle 𝑋 = (𝑥1, 𝑥2, 𝑥3) ∈ Δ, where 𝑥𝑖 is the 𝑖th arrival

edge of triangle𝑋 , the simplified variances of𝑋 of algorithms WRS,

TRI𝐸ST-I, and our algorithms GREAT𝐼 and GREATII are shown

below (according to Equation 8).

GREAT𝐼 : Var𝐼
(
𝐼𝑋
𝑃𝑋

)
= (1 − 𝛼)−2𝑟𝑥3 − 1;

GREATII : Var II
(
𝐼𝑋
𝑃𝑋

)
=

𝑡𝑥
1
𝑡𝑥

2

𝑘2
· (1 − 𝛼)−(2𝑟𝑥3−𝑟𝑥1−𝑟𝑥2) − 1;

TRI𝐸ST-I : VarTRI
(
𝐼𝑋
𝑃𝑋

)
=

𝑡𝑥
3
(𝑡𝑥

3
−1)

𝑘 (𝑘−1) − 1 [23, 39].

WRS : VarWRS
(
𝐼𝑋
𝑃𝑋

)
= 0 (Case 1),

𝑡𝑥
3

(1−𝛾)𝑘 −1 (Case 2),
𝑡𝑥

3
(𝑡𝑥

3
−1)

(1−𝛾)𝑘 ((1−𝛾)𝑘−1) − 1 (Case 3) [23],
where 𝑟𝑥𝑖 is the computational round where edge 𝑥𝑖 arrives in the

corresponding algorithm, 𝑡𝑥𝑖 is the timestamp of edge 𝑥𝑖 , 𝑡𝑥3 =

𝑡𝑥3 − 𝑘 · 𝛾 , and 𝛾 specifies the waiting room size in WRS.

Lemma 3.9. Let ˜VarTRI (𝜏), ˜Var𝐼 (𝜏), and ˜Var II (𝜏) be the simplified
variances of algorithms TRI𝐸ST-I,GREAT𝐼 , andGREATII , respectively.
We have

˜VarTRI (𝜏) > ˜Var𝐼 (𝜏) > ˜Var II (𝜏) . (9)

The proof is available in the supplementary material [47].

The simplified variance of WRS [23] consists of three cases. Case

1 and Case 2 cover the triangles with short timestamp intervals.

Case 3 includes the triangles with long timestamp intervals. It is

been shown that the simplified variance of WRS in Case 3 is the

same as that of TRI𝐸ST-I. Thus, our algorithms are more accurate

than WRS in real-world streaming graphs where a considerable

number of triangles have long timestamp intervals.

Sensitivity of 𝛼 .When using a large 𝛼 , more edges are removed

from the reservoir in each computational round, reducing the num-

ber of edges processed for triangle counting and thereby saving

computational operations. However, a large 𝛼 increases the prob-

ability of an edge being discarded, making it less likely to detect

triangles with long time intervals compared to those with short

time intervals. In contrast, when using a small 𝛼 , fewer edges are

removed from the reservoir per computational round, resulting in

more edges being processed for triangle counting and increasing

computational costs. However, a small 𝛼 decreases the probability

of an edge being discarded, improving the likelihood of detecting

triangles with long time intervals compared to those with short

time intervals. Therefore, to balance efficiency and accuracy, very

small values of 𝛼 should be avoided. Instead, 𝛼 can be tuned based

on the characteristics of the dataset to achieve good estimations.

4 ALGORITHM GREAT WITH ADAPTIVE

STRATEGY

Recall from Figure 1 that existing algorithms ignore the dynamic

timestamp intervals of the triangles in real-world streaming graphs,

resulting in inaccurate estimations. To address this issue, we pro-

pose algorithm GREAT+ that is an extension of algorithm GREAT.
It has an adaptive strategy that automatically adjusts 𝛼 to adapt to

2036

the changes of the timestamp intervals of the triangles in the edge

stream, so that the estimation accuracy is improved.

We first introduce the parameter 𝑧 in algorithm GREAT+. Let
𝑧 = (1 − 𝛼)𝑦 , where 𝑦 = 2𝑟𝑥3 − 𝑟𝑥1 − 𝑟𝑥2 . We call variable 𝑦 as

the computational round interval of a discovered triangle. The

computational round interval is similar to the timestamp interval,

which indicates how long it takes to discover a triangle. Based on

the observation in Figure 1, the distribution of the computational

round interval 𝑦 is non-uniform and the distribution of 𝑦 changes

over time. In algorithm GREAT, since parameter 𝛼 is fixed and the

value of 𝑧 changes with 𝑦, the variance of the estimation is not

stable. In algorithm GREAT+, we can set 𝑧 to a proper value to

obtain the desired variance. In this way, as 𝑦 changes over time, 𝛼

can be adjusted accordingly.

Given 𝑧, we proceed to present the proposed adaptive strategy

that automatically adjusts 𝛼 per computational round. We convert

𝑧 = (1 − 𝛼)𝑦 into the following form:

𝛼 (𝑟) = 1 − 𝑦 (𝑟)√𝑧, 𝑦 ≥ 0, (10)

where 𝛼 (𝑟) denotes the value of 𝛼 in computational round 𝑟 and

𝑦 (𝑟) is the average value of the computational round intervals of

the discovered triangles in the computational round 𝑟 − 1, i.e.,

𝑦 (𝑟) =

∑
𝑋=(𝑥1,𝑥2,𝑥3) ∈Δ(𝑟−1) 2𝑟𝑥3 − 𝑟𝑥1 − 𝑟𝑥2

|Δ(𝑟−1) |
, (11)

where Δ(𝑟−1) is the set of discovered triangles in computational

round 𝑟 − 1. The adaptive strategy uses Equation 10 to compute the

value of 𝛼 used in computational round 𝑟 . The idea of Equation 11 is

that the computational round intervals of triangles may be similar

in two consecutive computational rounds.

Next, we discuss how to determine the value of 𝑧. Figure 3 plots

Equation 10 using different values of 𝑧. Observe that when 𝑧 is

large, e.g., 0.7 and 0.9, 𝛼 decreases rapidly as 𝑦 increases and falls

within a range of very small values for the majority of the values

of 𝑦. We should avoid very small 𝛼 since the computational cost

cannot be reduced according to Equations 6 and 7. Therefore, we

suggest setting 𝑧 ≤ 0.5 and the lower bound of 𝛼 to 0.1.

0 20 40
y

0.0

0.2

0.4

0.6

0.8

α

z=0.1

z=0.3
z=0.5
z=0.7
z=0.9

Figure 3: Equation 10 using different values of 𝑧.

In the adaptive strategy, we should avoid obtaining large 𝛼 . The

reason is as follows. In the first a few computational rounds, 𝑦 (𝑟)

tends to be small, so that 𝛼 (𝑟) might be set to large values using

Equation 10. In this case, a large portion of edges will be removed

when the reservoir is full. Then, the value of𝑦 (𝑟) will remain consis-

tently small in the computational rounds followed. As a result, the

triangles with long computational round intervals will be missed.

To avoid this situation, we propose a heuristic setting that we set

𝛼 (𝑟) = 0.1 in the first 𝜆 computational rounds, 0 ≤ 𝑟 ≤ 𝜆. In our

experiments, we use 𝜆 = 5.

Accuracy analysis. It is straightforward to derive that algorithm

GREAT+ provides unbiased estimations following Lemma 3.8. Be-

cause GREATII has a smaller simplified variance than GREAT𝐼 , we
derive the simplified variance of GREAT+ based on GREATII . The
simplified variance of GREAT+ of a triangle 𝑋 = (𝑥1, 𝑥2, 𝑥3) ∈ Δ is

Var+
(
𝐼𝑋

𝑃𝑋

)
=

1

𝑃𝑋
− 1

=


𝑡𝑥1

𝑘
·

∏
𝑟 II𝑥

1
≤𝑟≤𝑟 II𝑥

3

(
1 − 𝛼 (𝑟)

)−1
·
𝑡𝑥2

𝑘

∏
𝑟 II𝑥

2
≤𝑟≤𝑟 II𝑥

3

(
1 − 𝛼 (𝑟)

)−1 − 1,
According to the setting of parameter 𝑧 in GREAT+, we have

min

𝑋 ∈Δ


∏

𝑟 II𝑥
1
≤𝑟≤𝑟 II𝑥

3

(
1 − 𝛼 (𝑟)

)
·

∏
𝑟 II𝑥

2
≤𝑟≤𝑟 II𝑥

3

(
1 − 𝛼 (𝑟)

) ≥ 𝑧.

Therefore, the simplified variance of GREAT+ can be bounded:

Var+
(
𝐼𝑋

𝑃𝑋

)
≤

𝑡𝑥1𝑡𝑥2

𝑘2
· 1
𝑧
− 1.

Then, we have

Var+
(
𝐼𝑋

𝑃𝑋

)
< Var II

(
𝐼𝑋

𝑃𝑋

)
, 2𝑟 II𝑥3 − 𝑟

II
𝑥2
− 𝑟 II𝑥1 >

ln(𝑧)
ln(1 − 𝛼) . (12)

Recall that 𝛼 is the parameter of GREATII and 𝑧 is the parameter

of GREAT+. Given 𝛼 and 𝑧, according to Equation 12, if a triangle

(𝑥1, 𝑥2, 𝑥3) satisfies 2𝑟 II𝑥3 − 𝑟
II
𝑥2
− 𝑟 II𝑥1 >

ln(𝑧)
ln(1−𝛼) in GREATII , the sim-

plified variance of this triangle in GREAT+ is reduced. For example,

consider the parameter settings used in the experiment: 𝑧 = 0.25

and 𝛼 = 0.1. In this case, triangles that satisfy 2𝑟 II𝑥3 − 𝑟
II
𝑥2
− 𝑟 II𝑥1 > 13

in GREATII have smaller simplified variances in GREAT+.
Sensitivity of 𝑧. Compared to GREATII with a given 𝛼 , using

a large 𝑧 in GREAT+ results in a smaller value of
ln(𝑧)

ln(1−𝛼) . Conse-

quently, more triangles satisfy Equation 12 in GREATII , leading
to a reduction in the simplified variances of a greater number of

triangles in GREAT+. However, as shown in Figure 3 and discussed

earlier, to effectively handle the dynamic timestamp intervals of

triangles represented by 𝑦, it is important to avoid using a large 𝑧.

This allows 𝛼 to be adjusted within a reasonable range, striking a

balance between efficiency and accuracy.

Remarks.We discuss the behavior of GREAT+ when timestamp in-

tervals in the stream change, and explain why GREAT+ can achieve

higher accuracy. As shown in Figure 1, various types of triangles

exist in the stream, including those with short, medium, and long

timestamp intervals. The variable 𝑦 in Equation 11 identifies the

type of triangle that is most prevalent in the stream at any given

moment. Due to the dynamic nature of timestamp intervals, the

value of 𝑦 changes over time. According to Equation 10, with 𝑧 held

constant, 𝛼 is a function of 𝑦. For example, when triangles with

long timestamp intervals are most frequent, 𝑦 becomes large and 𝛼

is assigned a small value. As a result, fewer edges in the reservoir

are removed, allowing more old edges to remain. This increases the

likelihood of discovering triangles with long timestamp intervals.

2037

Conversely, if triangles with shorter timestamp intervals become

more frequent, 𝑦 becomes small and 𝛼 is assigned a larger value,

which increases the likelihood of discovering triangles with short

timestamp intervals. According to Equation 8, as the discovery

probabilities of more triangles increase, the simplified variance

decreases.

5 EXPERIMENT

5.1 Setup

Datasets.We evaluate the performance of our algorithms and com-

petitors on four real-world streaming graphs. Dataset Review [15]

is a network of the user reviews of Amazon products from 1997 to

2018. Dataset Yahoo [4] is a network of ratings for songs on Yahoo.

Dataset StackOverflow [21] is an interaction network of questions

and answers from Stack Overflow website. Dataset Wikipedia [21]

is a network that represents user-page modification interactions

on English Wikipedia website. We remove duplicated edges from

all datasets. Table 2 shows the statistics of the four datasets.

Table 2: Statistics of Datasets.

Dataset #Vertices #Edges #Triangles

Flow rate

(second/edge)

Review [15] 359,501 4,873,540 333,661 0.01

Yahoo [4] 1,000,990 256,804,235 7,163,094,656 0.75

StackOverflow [21] 2,601,977 63,497,050 114,571,929 0.12

Wikipedia [21] 42,541,517 572,591,272 881,439,081 0.49

Competitors.We compare the proposed algorithms to four com-

petitors: one state-of-the-art fixed probability based algorithmMAS-

COT [26] and three representative fixed-sized memory based algo-

rithms TRI𝐸ST-I [39], FURL-0B [18], and WRS [23].

The reasons why excluding recent competitors are as follows.

RFES-I [50] did not return results within 10 hours on datasetWikipedia.

The performance of TRI𝐸ST-B [39] is worse than that of TRI𝐸ST-I.

PartitionCT [45] is an extension of TRI𝐸ST-B for dealing with dupli-

cated edges, DVHT-b [51] and DEHT-b [49] are distributed versions

of TRI𝐸ST-B. The Hyperedge-based sampling [54] extends TRI𝐸ST-

B to hypergraph. TS-triangle [53] extends TRI𝐸ST-I to estimate

both triangle counts and vertex degrees. Tri-Fly [32], CoCos [34],

DEHT-i [51], DVHT-i [49], ThinkDACC [33] and TbEC [48] are all

distributed versions of TRI𝐸ST-I.

Metric. We evaluate the accuracy of estimated global triangle

counts of our algorithms and the competitors in terms of relative

error RE = |𝜏 − 𝜏 | /𝜏 . The accuracy of the estimated local triangle

count of each vertex is evaluated in terms of the Local Average

Percentage Error (LAPE) [51], i.e., LAPE = 1

|𝑉 |
∑

𝑣∈𝑉
|𝜏𝑣−𝜏𝑣 |
𝜏𝑣+1 . The

efficiency of our algorithms and the competitors is evaluated in

terms of the elapsed time that is the duration required to process

the entire dataset. The reported results are the average values of 10

trials on each dataset. In addition, the average edge flow rates of

the four datasets are shown in Table 2. The average estimation time

in our algorithms is less than 10
−5

second/edge, shown in Figure 4.

Thus, our algorithms are fast enough to make estimations before

the next edge arrives in the stream.

Parameters. The common parameter of all the algorithms is reser-

voir size (a.k.a. memory budget size) 𝑘 . By default, we set 𝑘 = 10
6

for datasets Yahoo, StackOverflow and Wikipedia and set 𝑘 = 10
5

for dataset Review. We also evaluate the performance of all the

algorithms when varying 𝑘 . Algorithm MASCOT has unlimited

memory budget. To have a fair comparison, we set its edge sam-

pling probability to 𝑘/𝑚, where𝑚 is the total number of edges in

the dataset. In this way, the expected memory size of MASCOT

is the same as all the other algorithms. For algorithm WRS, the

ratio of the waiting room to the reservoir is set to 𝛾 = 0.1 that is

suggested in their work. In algorithms GREATI and GREATII , we
set 𝛼 = 0.1. In algorithm GREAT+, we set 𝑧 = 0.25 for all datasets.

We also evaluate the performance of our algorithms when varying

𝛼 and 𝑧.

Setting. We implement our algorithms, TRI𝐸ST-I, and MASCOT

using Java. The source code of WRS and FURL-0B is provided by

their authors. All the algorithms are running on a machine with

4 Intel Xeon E7-4830 CPUs (56 cores, 2.0 GHz) and 2 TB memory

and with Ubuntu 16.04.7 LTS. Note that the memory size needed

by our algorithms is determined by the budget size 𝑘 . For example,

the largest dataset Wikipedia costs 35740 MB memory during our

algorithms, which is far less than the machine memory.

5.2 Results

5.2.1 Accuracy vs. Efficiency. Figure 4 compares our algorithms

with the competitors from two perspectives where the x-axis is the

elapsed time and the y-axis is the relative error. The same, Figure 5

compares our algorithms with the competitors according to the

LAPE and the elapsed time.

Accuracy. With respect to the relative error of the global triangle

count, GREAT+ beats all the competitors across all datasets as Fig-

ure 4 shows. It is because GREAT+ adaptively generates samples

based on the dynamic timestamp interval distribution in the stream.

WRS assumes the temporal locality in the stream and tends to dis-

cover triangles with short timestamp intervals. TRI𝐸ST-I generates

uniform edge samples that is inconsistent with the dynamic times-

tamp interval distribution. Using the same amount of memory as

the other algorithms, MASCOT samples much less edges, leading

to inaccurate estimations. FURL-0B uses Method II in the frame-

work (Section 2.2), i.e., performing estimations after edge sampling.

Therefore, it discovers considerable less triangles than the other

algorithms, resulting in inaccurate estimations. The relative errors

of GREAT𝐼 and GREATII are similar on all datasets. GREAT𝐼 ex-
hibits the second smallest relative error on the Yahoo dataset and

GREATII achieves the second smallest relative error on datasets

Review. Although GREAT𝐼 and GREATII are comparable to WRS

in some cases and TRI𝐸ST-I in terms of relative error, these two

methods are faster.

In terms of the accuracy of the estimated local triangle count as

Figure 5 shows, MASCOT and FURL-0B exhibit poor LAPE perfor-

mance, while WRS yields the best results. The algorithms GREAT𝐼 ,
GREATII , GREAT+, and TRI𝐸ST-I have similar LAPE values, but

GREAT𝐼 and GREATII are slightly faster than TRI𝐸ST-I. Our pro-

posed algorithms GREAT𝐼 , GREATII , and GREAT+ are slightly in-

ferior to WRS in terms of accuracy, but offer significantly better

efficiency. The LAPE is generally correlated with the number of

discovered vertices; that is, as the number of discovered vertices

increases, the LAPE tends to decrease. This is because a higher

number of discovered vertices allows for more local triangles to be

2038

101

10−4

10−3

10−2

10−1

TRI ̀EST-I MASCOT WRS FURL-0B GREATI GREATII GREAT+

(a) Review. (b) StackOverflow. (c) Yahoo. (d) Wikipedia.

Figure 4: Relative error vs. computational time.
101

10−4

10−3

10−2

10−1

TRI ̀EST-I MASCOT WRS FURL-0B GREATI GREATII GREAT+

(a) Review. (b) StackOverflow. (c) Yahoo. (d) Wikipedia.

Figure 5: LAPE vs. computational time.

computed, thereby reducing the LAPE value. Except for FURL-0B,

whose performance is primarily influenced by the default hash func-

tion, MASCOT samples fewer vertices across all datasets, resulting

in the highest (worst) LAPE. On the other hand,WRS has the largest

number of discovered triangle vertices across all datasets, leading to

the lowest (best) LAPE. The algorithmsGREAT𝐼 ,GREATII ,GREAT+,
and TRI𝐸ST-I exhibit similar LAPEs because they discover a similar

number of triangle vertices. However, as the number of discovered

vertices increases, the cost of maintaining the count of local trian-

gles also increases, which naturally leads to a decrease in efficiency.

Efficiency. According to Figure 4, MASCOT is the fastest because

it is a fixed-probability algorithm which saves the computational

cost for removing edges. However, it has no bound on memory size,

which is not applicable for streaming graphs. As mentioned earlier,

when using the same amount of memory as the other algorithms,

MASCOT produces inaccurate estimations. The efficiencies of al-

gorithms GREAT𝐼 and GREATII are nearly identical, both tied for

the second place. The reason is provided in Section 3.3 that their

reservoirs are often not full (storing fewer than 𝑘 edges) most of the

time, which reduces the computational cost of triangle counting.

TRI𝐸ST-I is slower than GREAT𝐼 and GREATII because its reser-
voir is full all the time. GREAT+ is slightly slower than GREAT𝐼 ,
GREATII and TRI𝐸ST-I due to the cost of the adaptive strategy. WRS

is the second slowest algorithm because it samples each arrived

edge with probability 1 and updates the sample graph stored in the

waiting room. In contrast, the other algorithms only update the

sample graph in the reservoir when an edge is sampled successfully.

FURL-0B is the slowest due to the HashHeap based reservoir, which

takes 𝑂 (𝑘 log𝑘) maintenance cost for each sampled edge.

Summary.MASCOT is a fixed-probability algorithm which has no

bound on memory size, so that it is not suitable for the streaming

setting. Based on the evaluation results above, we rank all the other

algorithms by their accuracy and efficiency in most cases, as shown

in Table 3. The relative error of GREAT+ is significantly better (an

order of magnitude less) than that of the competitors. GREATII and
GREAT𝐼 secure second and third place in terms of relative error,

respectively.GREAT+,GREAT𝐼 , andGREATII sample a similar num-

ber of vertices, resulting in comparable LAPEs, which rank second

best among all competitors. Algorithms GREAT𝐼 and GREATII are
the fastest across all datasets among FM-based algorithms.GREAT+

is slightly slower than GREAT𝐼 and GREATII . When 𝛼 = 0.1, the

performance of GREAT𝐼 and GREATII are close in Figures 4 and

5. We will demonstrate in Figure 7 that GREAT𝐼 is faster, while
GREATII is more accurate across different values of 𝛼 .

5.2.2 Effect of parameters. This section reports the performance

of different algorithms under different parameter settings.

Scalability. Figure 6 shows the elapsed time of our algorithmswhen

varying the number of arrived edges. Across all datasets, the elapsed

time of our algorithms scales linearly with the number of arrived

edges. The time spent for processing each edge is approximately

10
−5

seconds, regardless of the total number of edges processed so

far.

2039

0 1 2 3 4
1e6

0

1

2

3

4

5

GREATI GREATII GREAT+

103 105 107

The number of arrived edges
10−2

10−1

100

101

Ti
m

e
(s

ec
on

ds
)

(a) Review.

104 106 108
The number of arrived edges
10−2

10−1

100

101

102

Ti
m

e
(s

ec
on

ds
)

(b) StackOverflow.

103 105 107 109
The number of arrived edges
10−3
10−2
10−1
100
101
102
103

Ti
m

e
(s

ec
on

ds
)

(c) Yahoo.

103 105 107 109
The number of arrived edges
10−3
10−2
10−1
100
101
102
103

Ti
m

e
(s

ec
on

ds
)

(d) Wikipedia.

Figure 6: The elapsed time of our algorithms when varying the number of arrived edges.

1 5 10 25 50 75
α (×10−2)

0
2
4
6
8

10
12

Va
ria

nc
e

(×
10

11
)

GREATI GREATII

1 5 10 25 50 75
α (×10−2)

3.0

3.5

4.0

4.5

5.0

Ti
m

e
(×

10
 se

co
nd

s)

(a) Time.

1 5 10 25 50 75
α (×10−2)

0.0

1.6

3.0

4.5

6.0
Re

la
tiv

e
er

ro
r (

×1
0−3

)

(b) Relative error.

1 5 10 25 50 75
α (×10−2)

5.0

5.5

6.0

6.5

7.0

LA
PE

 (×
10

−1
)

(c) LAPE.

Figure 7: Varying 𝛼 of GREATI and GREATII on StackOverflow.

Effect of 𝛼 . Figure 7 shows the performance of algorithms GREATI

andGREATII when varying𝛼 on dataset StackOverflow. The elapsed

time decreases as 𝛼 increases, which is consistent with the amor-

tized time complexity analysis (Equations 6 and 7). Both the relative

error and the LAPE become worse as 𝛼 increases. This is because

when 𝛼 is large, the reservoir stores fewer edges so that fewer

triangles are discovered, which is consistent with the analysis of

sensitivity of 𝛼 in Section 3.4.

We observe that GREATI is slightly more efficient but is slightly

less accurate than GREATII , which has been proved in Sections 3.3

and 3.4.

Effect of 𝑧. The performance of GREAT+ with different values of

𝑧 on StackOverflow is presented in Figure 8. The larger the value

of 𝑧, the smaller the value of 𝛼 (𝑟) , leading to more accurate but

inefficient results. The main reason is that more edges are stored

in the reservoir. We observe that as 𝑧 increases, the elapsed time

increases, and the relative error and the LAPE decrease, which is

consistent with the analysis of sensitivity of 𝑧 in Section 4. When

using 𝑧 = 0.25 with the StackOverflow dataset, GREAT+ strikes a
balance between accuracy and efficiency. When we choose a larger

𝑧, even though the LAPE becomes better slightly, the relative error

cannot be improved and the elapsed time increases a lot. Therefore,

we recommend avoiding large values of 𝑧.

Effect of memory budget size. Figure 9 shows the performance

of our algorithms and the competitors on dataset StackOverflow

when varying the memory budget size. The elapsed time of all the

algorithms increase as the memory budget size increases because

more edges are maintained in the reservoir. As the memory budget

size increases, we observe that (i) the relative error of MASCOT

and GREATI fluctuates and all other algorithms have a decreasing

Table 3: The performance rankings of different algorithms.

Algorithm

Accuracy Efficiency

Relative error LAPE Elapsed time

GREAT+ 1 2 3

GREAT𝐼 3 2 1

GREATII 2 2 2

WRS 4 1 5

TRI𝐸ST-I 5 2 4

FURL-0B 6 6 6

MASCOT Unlimited memory size

trend, (ii) except FURL-0B, the LAPEs of all the other algorithms

become better. In general, as the memory budget size increases, the

accuracy of most algorithms is improved. This is because the larger

the memory budget size is, more edges are stored in the reservoir

and more triangles can be discovered. Note that GREATI , GREATII ,
and GREAT+ have the smallest relative errors when using small

memory budge size.

6 RELATEDWORK

Most of existing algorithms for triangle counting estimation over

streaming graphs are based on sampling techniques. In terms of

the way of sampling the edge stream, existing triangle counting

estimation algorithms can be classified into two categories [36].

One category of algorithms samples edges with fixed probability

and uses unlimited memory budget size. The other category of

algorithms uses a fixed-sized memory and samples edges with

changing probability.

2040

(a) Time. (b) Relative error. (c) LAPE.

Figure 8: Varying 𝑧 of GREAT+ on StackOverflow. 100 2 × 100 3 × 100 4 × 100

Budget

102

Ti
m

e
(s

ec
on

ds
)

TRI ̀EST-I MASCOT WRS FURL-0B GREATI GREATII GREAT+

104 105 106
Budget size

101

102

103

Ti
m

e
(s

ec
on

ds
)

(a) Time.

104 105 106
Budget size

10−4

10−3

10−2

10−1

100
Re

la
tiv

e
er

ro
r

(b) Relative error.

104 105 106
Budget size

0.2

0.4

0.6

0.8

1.0

LA
PE

(c) LAPE.

Figure 9: Varying memory budget size on StackOverflow.

Fixed probability (FP) based estimation algorithms. Buriol et

al. [5] sample a vertex 𝑣 and an edge (𝑎, 𝑏). If both the cross edges

(𝑎, 𝑣) and (𝑏, 𝑣) arrive in the stream, triangle (𝑣, 𝑎, 𝑏) is discovered.
Pavan et al. [28] propose the neighborhood sampling that samples

one edge together with one of its neighboring edges. If the third

edge arrives in the stream, a triangle is discovered. Kavassery-

Parakkat et al. [19] improve these two works using multi-sampling

to achieve better theoretical bounds on the memory usage. They

propose (i) the EVMS algorithm that samples multiple vertices

and multiple edges and searches for corresponding cross edges

in the stream and (ii) the NMS algorithm that samples multiple

edges together with multiple neighboring edges and searches for

the corresponding third edges in the stream. Framework gSH [1]

samples an edge based on the number of previously selected edges

that are adjacent to it and discovers triangles from sampled edges.

MASCOT [26, 27] uses the DOULION algorithm [42] to sample

each edge with a given fixed probability.

The FP based algorithms are not applicable to streaming graphs

due to the following reasons. Some of the FP based algorithms

require the size of the graph in order to determine the sampling

probability. However, this information may be unavailable. The

space complexity may be high since the memory size needed is

related to the number of sampled edges.

Fixed-sized memory (FM) based estimation algorithms. This

type of algorithms adopts reservoir sampling [20] where the reser-

voir occupies fixed-sized memory space and one random edge is

removed to free space for future edges when the reservoir is full.

Jha et al. [16, 17] are the pioneer to use reservoir sampling for the

triangle counting estimation. These works maintain a reservoir for

wedges (paths of length 2) and a reservoir for edges. The number of

triangles is estimated based on the probability of the closed wedges.

However, these works cannot estimate local triangle counts and

do not guarantee unbiasedness. Moreover, these works suffer from

high computation cost since two reservoir sampling processes are

conducted. TRI𝐸ST [38, 39] reduces computation cost by main-

taining one reservoir for edges. One variant TRI𝐸ST-B performs

estimations after edge sampling and computes the probability of a

discovered triangle as the probability that all three edges are sam-

pled uniformly without replacement. The other variant TRI𝐸ST-I

performs estimations before edge sampling. Later, TS-triangle [53]

estimates vertex degrees and triangle counts at the same time using

the T-Sample [52] that is a dual sampling mechanism performing

both uniform sampling and non-uniform sampling with a base

reservoir and an incremental reservoir. The uniform sampling is

used to count triangles by employing the TRI𝐸ST-I. RFES and its

variants [50] extend TRI𝐸ST by storing the adjacent vertices of the

two endpoints of each edge in the reservoir. It is able to discover the

triangles when only one of the edges is sampled. However, the space

complexity is high. WRS [23, 31] stores recent edges in the waiting

room and keeps old edges in the reservoir. Each arrived edge is

first sampled into the waiting room with probability 1. When the

waiting room is full, the oldest edge in the waiting room are moved

to the reservoir. FURL-0B [18] is based on TRI𝐸ST-B that performs

estimation after sampling. It uses a HashHeap to implement the

reservoir. Recently, NHMS [36] extends NMS [19] by setting the

memory limit. THS [36] extends TRI𝐸ST by fixing the sampling

probability. However, these two algorithms are biased.

The type of FM-based algorithms is superior to the type of FP-

based algorithms in our problem setting because it requires no

prior knowledge of the streaming graph and uses limited memory

budget size to handle unbounded edge stream. Our algorithms

2041

belong to the type of FM-based algorithms and outperform existing

FM-based algorithms in terms of efficiency (see Tables 1 and 3) and

accuracy (see Lemma 3.9 and Table 3). Specifically, existing FM-

based algorithms are inaccurate because they ignore the dynamic

timestamp intervals of triangles in real-world streaming graphs,

resulting in sampled triangles that do not reflect the true timestamp

interval distribution. Moreover, these algorithms are inefficient, as

their reservoirs are always full. This leads to a computational cost

for counting triangles that is proportional to the reservoir size 𝑘 ,

which can be substantial.

Distributed triangle counting estimation. BulkUpdateAll [40] is

a distributed version of the neighborhood sampling [28]. REPT [44]

extends MASCOT to a distributed version where each arrived edge

is broadcast to all the workers for triangle counting before sampling.

Tri-Fly [32], CoCos [34], DVHT-b [51], DEHT-i [51], DEHT-b [49],

DVHT-i [49], and TbEC [48] all extend TRI𝐸ST [39] to distributed

algorithms. They differ in the way of broadcasting edges to the

workers. Tri-Fly [32] broadcasts each edge to all the workers. Co-

Cos [34], DVHT-b [51], and DVHT-i [49] broadcast edges using the

hash values of the vertices. DEHT-b [49] and DEHT-i [51] broadcast

edges using the hash values of the edges. TbEC [48] is based on

DiSLR and uses the binary trie to enable lossless compression and

efficient transmission.

These distributed algorithms focus on how to assign the edges to

the workers and handle communication issues. Our algorithms can

be easily extended to distributed versions using these techniques.

Due to the space limitations, we leave this direction as our future

work.

Triangle counting estimation with deleted and duplicated

edges.TRI𝐸ST-FD [38] extends TRI𝐸ST-B to deal with deleted edges

using the Random Pairing [9]. PartitionCT [45] extends TRI𝐸ST-

B to handle duplicated edges. It considers the reservoir with 𝑘

edges as 𝑘 buckets and maps each arrived edge to different buck-

ets using a hash function. MultiWMascot and MultiBMascot [26]

extend MASCOT for handling deleted and duplicated edges in the

stream. ThinkDFAST [33] extends MASCOT for handling deleted

edges in the stream. ThinkDACC [33] extends TRI𝐸ST-I to handle

deleted edges. To deal with duplicated edges, FURL-B [18] is devel-

oped based on TRI𝐸ST-B and FURL-W [18] extends TRI𝐸ST-I using

weighted sampling. HyperSV [54] performs triangle counting on

streaming hyperedge graphs based on TRI𝐸ST-B. SWTC [13, 14]

combines the Bound Priority Sampling [8] and PartitionCT to deal

with the triangle estimation problem with the sliding window set-

ting where both duplicated and deleted edges are included.

WRS [23] has been extended to handle deleted edges, while

MASCOT [33] and TRI𝐸ST-I [33] have been extended to handle

both deleted and duplicated edges. Similarly, our algorithms can be

easily extended to support deleted and duplicated edges. However,

due to space constraints, we leave this extension for future work.

Reservoir based sampling algorithms for streaming data. The

reservoir based sampling method is appropriate for streaming data

because it maintains a bounded memory size, preventing memory

leaks. Many researches on streaming data use traditional reservoir

sampling, because it generate a uniform sample [20, 25, 43]. Besides

traditional reservoir sampling that has been widely used in existing

triangle counting estimation algorithms, there exist other reservoir

based sampling algorithms.

Counting sampling algorithm [11] samples elements with a prob-

ability and maintains a counter 𝐶 for each element in the reservoir.

When the reservoir is full, the counter of each element in the reser-

voir is decreased by 1 with a probability. If the counter of an element

equals 0, the element is removed from the reservoir. The counter

in the counting sampling algorithm tracks the occurrence count

of an element. Thus, the removing strategy of the counting sam-

pling algorithm is different from our GRS. In addition, maintaining

the counters increases the computational cost. Distinct sampling

algorithm [12, 22] is a biased algorithm. Each arrived element is

given a hash value. An element is added to the reservoir if its hash

value is less than a threshold. When the reservoir is full, all the

elements in the reservoir are removed with probability 0.5. The

removing strategy of the distinct sampling algorithm is a special

case of our GRS when the parameter 𝛼 is set to 0.5. The performance

of this special case is included in our experiment, shown in Fig-

ure 7. StreamSamp [7, 35] removes newly arrived sampled elements

with probability 0.5 and keeps the old elements in the reservoir,

so that it is unable to discover the triangles with short timestamp-

intervals. The sliding window based algorithm SWTC [14] removes

a batch of old elements, so that it may miss the triangles with long

timestamp-intervals. Since our GRS randomly removes the edges

in the reservoir with probability 𝛼 , the sets of removed elements

in both StreamSamp and SWTC represent one possible outcome of

our GRS.

7 CONCLUSION

Triangle counting estimation is an important tool for various ap-

plications, e.g., network evolution analysis, community detection,

anomaly detection, and subgraph detection. However, state-of-the-

art algorithms, including FM-based algorithms and FP-based algo-

rithms, for counting triangles over streaming graphs still suffer

from substantial accuracy and efficiency issues. To overcome these

two issues, we further develop the generalized reservoir sampling

based triangle counting estimation (GREAT), which achieves lower

amortized time complexity and smaller variance (cf. Sections 3.3

and 3.4). By exploring the property of dynamic timestamp interval

in real-world streaming graphs, our advanced solution GREAT+

further improves the estimation accuracy. Experiment results on

four real streaming graph datasets verify that our algorithms sig-

nificantly improve the accuracy of triangle counting estimations

and achieve visible speedups.

In the future, we plan to extend our work for supporting stream-

ing graphs with deleted and duplicated edges. Moreover, we will

investigate how to extend our algorithms, GREAT and GREAT
+
, on

distributed systems for further improving the scalability of triangle

counting estimation.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural Science

Foundation of China under Grants 62372308, 23IAA00610, and

62202401 and the GuangDong Basic and Applied Basic Research

Foundation under Grant 2023A1515011619.

2042

REFERENCES

[1] Nesreen K. Ahmed, Nick G. Duffield, Jennifer Neville, and Ramana Rao Kompella.

2014. Graph sample and hold: a framework for big-graph analytics. In KDD.
1446–1455.

[2] Nesreen K. Ahmed, Jennifer Neville, and Ramana Rao Kompella. 2013. Network

Sampling: From Static to Streaming Graphs. TKDD 8, 2 (2013), 7:1–7:56.

[3] David A. Bader, Fuhuan Li, Anya Ganeshan, Ahmet Gündogdu, Jason Lew,

Oliver Alvarado Rodriguez, and Zhihui Du. 2023. Triangle Counting Through

Cover-Edges. In HPEC. 1–7.
[4] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression

techniques. InWWW. 595–602.

[5] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-

Spaccamela, and Christian Sohler. 2006. Counting triangles in data streams.

In PODS. 253–262.
[6] Don Coppersmith and Shmuel Winograd. 1987. Matrix Multiplication via Arith-

metic Progressions. In STOC. 1–6.
[7] Baptiste Csernel, Fabrice Clerot, and Georges Hébrail. 2006. Datastream clus-

tering over tilted windows through sampling. Knowledge discovery from data
streams (2006), 127.

[8] Rainer Gemulla and Wolfgang Lehner. 2008. Sampling time-based sliding win-

dows in bounded space. In SIGMOD. 379–392.
[9] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. 2008. Maintaining bounded-

size sample synopses of evolving datasets. VLDB 17, 2 (2008), 173–202.

[10] Sayan Ghosh and Mahantesh Halappanavar. 2020. TriC: Distributed-memory

Triangle Counting by Exploiting the Graph Structure. In HPEC. 1–6.
[11] Phillip B. Gibbons and Yossi Matias. 1998. New Sampling-Based Summary

Statistics for Improving Approximate Query Answers. In SIGMOD. 331–342.
[12] Phillip B. Gibbons and Srikanta Tirthapura. 2001. Estimating simple functions

on the union of data streams. In SPAA. 281–291.
[13] Xiangyang Gou and Lei Zou. 2021. Sliding Window-based Approximate Triangle

Counting over Streaming Graphs with Duplicate Edges. In SIGMOD. 645–657.
[14] Xiangyang Gou and Lei Zou. 2023. Sliding window-based approximate triangle

counting with bounded memory usage. VLDB J. 32, 5 (2023), 1087–1110.
[15] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua

Hu, Emanuele Rossi, Jure Leskovec, Michael M. Bronstein, Guillaume Rabusseau,

and Reihaneh Rabbany. 2023. Temporal Graph Benchmark for Machine Learning

on Temporal Graphs. In NIPS.
[16] Madhav Jha, C. Seshadhri, and Ali Pinar. 2013. A space efficient streaming

algorithm for triangle counting using the birthday paradox. In SIGKDD. 589–
597.

[17] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. A Space-Efficient Streaming

Algorithm for Estimating Transitivity and Triangle Counts Using the Birthday

Paradox. TKDD 9, 3 (2015), 15:1–15:21.

[18] Minsoo Jung, Yongsub Lim, Sunmin Lee, and U Kang. 2019. FURL: Fixed-memory

and uncertainty reducing local triangle counting for multigraph streams. Data
Min. Knowl. Discov. 33, 5 (2019), 1225–1253.

[19] Neeraj Kavassery-Parakkat, Kiana Mousavi Hanjani, and A. Pavan. 2018. Im-

proved Triangle Counting in Graph Streams: Power of Multi-Sampling. In

ASONAM. 33–40.

[20] Donald E Knuth. 1973. The art of computer programming, vol. 2:Seminumerical

Algorithms. Reading MA: Addison-Wisley (1973), 144.

[21] Jérôme Kunegis. 2013. KONECT: the Koblenz network collection. In WWW.

1343–1350.

[22] Bibudh Lahiri and Srikanta Tirthapura. 2009. Stream Sampling. Springer US,
2838–2842.

[23] Dongjin Lee, Kijung Shin, and Christos Faloutsos. 2020. Temporal locality-aware

sampling for accurate triangle counting in real graph streams. VLDB J. 29, 6
(2020), 1501–1525.

[24] Jure Leskovec and Rok Sosic. 2016. SNAP: A General-Purpose Network Analysis

and Graph-Mining Library. ACM Trans. Intell. Syst. Technol. 8, 1 (2016), 1:1–1:20.
[25] Kim-Hung Li. 1994. Reservoir-sampling algorithms of time complexity o (n (1+

log (n/n))). TOMS 20, 4 (1994), 481–493.
[26] Yongsub Lim, Minsoo Jung, and U Kang. 2018. Memory-Efficient and Accu-

rate Sampling for Counting Local Triangles in Graph Streams: From Simple to

Multigraphs. TKDD 12, 1 (2018), 4:1–4:28.

[27] Yongsub Lim and U Kang. 2015. MASCOT: Memory-efficient and Accurate

Sampling for Counting Local Triangles in Graph Streams. In SIGKDD. 685–694.
[28] A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. 2013.

Counting and Sampling Triangles from a Graph Stream. PVLDB 6, 14 (2013),

1870–1881.

[29] Marco Sánchez-Aguayo, Luis Urquiza-Aguiar, and José Estrada-Jiménez. 2021.

Fraud Detection Using the Fraud Triangle Theory and Data Mining Techniques:

A Literature Review. Comput. 10, 10 (2021), 121.
[30] Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet Erdem Sariyüce, and Srikanta Tirtha-

pura. 2019. FLEET: Butterfly Estimation from a Bipartite Graph Stream. In CIKM.

1201–1210.

[31] Kijung Shin. 2017. WRS:Waiting Room Sampling for Accurate Triangle Counting

in Real Graph Streams. In ICDM. 1087–1092.

[32] Kijung Shin, Mohammad Hammoud, Euiwoong Lee, Jinoh Oh, and Christos

Faloutsos. 2018. Tri-Fly: Distributed Estimation of Global and Local Triangle

Counts in Graph Streams. In PAKDD. 651–663.
[33] Kijung Shin, Jisu Kim, Bryan Hooi, and Christos Faloutsos. 2018. Think Before

You Discard: Accurate Triangle Counting in Graph Streams with Deletions. In

PKDD. 141–157.
[34] Kijung Shin, Euiwoong Lee, Jinoh Oh, Mohammad Hammoud, and Christos

Faloutsos. 2021. CoCoS: Fast and Accurate Distributed Triangle Counting in

Graph Streams. TKDD 15, 3 (2021), 38:1–38:30.

[35] Rayane El Sibai, Yousra Chabchoub, Jacques Demerjian, Zakia Kazi-Aoul, and

Kablan Barbar. [n.d.]. Sampling algorithms in data stream environments. In

ICDEc. 29–36.
[36] Paramvir Singh, Venkatesh Srinivasan, and Alex Thomo. 2021. Fast and Scalable

Triangle Counting in Graph Streams: The Hybrid Approach. In AINA. 107–119.
[37] Stavros Souravlas, Angelo Sifaleras, M. Tsintogianni, and Stefanos Katsavounis.

2021. A classification of community detection methods in social networks: a

survey. Int. J. Gen. Syst. 50, 1 (2021), 63–91.
[38] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. 2016.

TRIÈST: Counting Local and Global Triangles in Fully-Dynamic Streams with

Fixed Memory Size. In SIGKDD. 825–834.
[39] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. 2017.

TRIÈST: Counting Local and Global Triangles in Fully Dynamic Streams with

Fixed Memory Size. TKDD 11, 4 (2017), 43:1–43:50.

[40] Kanat Tangwongsan, A. Pavan, and Srikanta Tirthapura. 2013. Parallel triangle

counting in massive streaming graphs. In CIKM. 781–786.

[41] Charalampos E. Tsourakakis. 2008. Fast Counting of Triangles in Large Real

Networks without Counting: Algorithms and Laws. In ICDM. 608–617.

[42] Charalampos E. Tsourakakis, U Kang, Gary L. Miller, and Christos Faloutsos.

2009. DOULION: counting triangles in massive graphs with a coin. In KDD.
837–846.

[43] Jeffrey S Vitter. 1985. Random sampling with a reservoir. TOMS 11, 1 (1985),

37–57.

[44] Pinghui Wang, Peng Jia, Yiyan Qi, Yu Sun, Jing Tao, and Xiaohong Guan. 2019.

REPT: A Streaming Algorithm of Approximating Global and Local Triangle

Counts in Parallel. In ICDE. 758–769.
[45] PinghuiWang, YiyanQi, Yu Sun, Xiangliang Zhang, Jing Tao, and XiaohongGuan.

2017. Approximately Counting Triangles in Large Graph Streams Including Edge

Duplicates with a Fixed Memory Usage. PVLDB 11, 2 (2017), 162–175.

[46] Stanley Wasserman and Katherine Faust. 1994. Social Network Analysis: Methods
and Applications. Cambridge University Press.

[47] Siyue Wu, Dingming Wu, Sinhong Cheuk, Tsz Nam Chan, and Kezhong

Lu. 2025. Supplementary material for “GREAT: Generalized Reservoir

Sampling based Triangle Counting Estimation over Streaming Graphs”.

https://github.com/sinhong-cheuk/GREAT-Generalized-Reservoir-Sampling-

based-Triangle-Counting-Estimation-over-Streaming-Graphs.

[48] Xu Yang, Chao Song, Jiqing Gu, Ke Li, and Hongwei Li. 2023. A distributed

streaming framework for edge-cloud triangle counting in graph streams. KBS
278 (2023), 110878.

[49] Xu Yang, Chao Song, Mengdi Yu, Jiqing Gu, and Ming Liu. 2022. Distributed

Triangle Approximately Counting Algorithms in Simple Graph Stream. TKDD
16, 4 (2022), 79:1–79:43.

[50] Changyong Yu, Huimin Liu, Fazal Wahab, Zihan Ling, Tianmei Ren, Haitao Ma,

and Yuhai Zhao. 2023. Global triangle estimation based on first edge sampling

in large graph streams. TJS 79, 13 (2023), 14079–14116.
[51] Mengdi Yu, Chao Song, Jiqing Gu, and Ming Liu. 2019. Distributed Triangle

Counting Algorithms in Simple Graph Stream. In ICPADS. 294–301.
[52] Lingling Zhang, Hong Jiang, Fang Wang, Dan Feng, and Yanwen Xie. 2019. T-

Sample: A Dual Reservoir-Based Sampling Method for Characterizing Large

Graph Streams. In ICDE. 1674–1677.
[53] Lingling Zhang, Hong Jiang, Fang Wang, Dan Feng, and Yanwen Xie. 2020.

Reservoir-based sampling over large graph streams to estimate triangle counts

and node degrees. FGCS 108 (2020), 244–255.
[54] Lingling Zhang, Zhiwei Zhang, Guoren Wang, Ye Yuan, and Zhao Kang. 2023.

Efficiently Counting Triangles for Hypergraph Streams by Reservoir-Based Sam-

pling. TKDE 35, 11 (2023), 11328–11341.

2043

https://github.com/sinhong-cheuk/GREAT-Generalized-Reservoir-Sampling-based-Triangle-Counting-Estimation-over-Streaming-Graphs
https://github.com/sinhong-cheuk/GREAT-Generalized-Reservoir-Sampling-based-Triangle-Counting-Estimation-over-Streaming-Graphs

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Reservoir Sampling based Framework

	3 Generalized Reservoir Sampling based Triangle Counting Estimation
	3.1 Generalized Reservoir Sampling (GRS)
	3.2 GRS based Triangle Counting Estimation Algorithm GREAT
	3.3 Amortized Time Complexity
	3.4 Accuracy Analysis

	4 Algorithm GREAT with Adaptive Strategy
	5 Experiment
	5.1 Setup
	5.2 Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

