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Abstract

Learning-based point cloud completion tasks have shown
potential in various critical tasks, such as object detection,
classification, and registration. However, accurately and ef-
ficiently quantifying the shape error between the predicted
point clouds generated by networks and the ground truth re-
mains challenging. While EMD-based loss functions excel in
shape detail and perceived density distribution, their approach
can only yield results with significant discrepancies from the
actual EMD within a tolerable training time. To address these
challenges, we first propose an initial price based on an auc-
tion algorithm, reducing the number of iterations required for
the algorithm while ensuring the correctness of the assign-
ment results. We then introduce a method to compute the ini-
tial price through a successive shortest path and the Euclidean
information between its nodes. Finally, we adopt a series of
optimization strategies to speed up the algorithm and offer an
EMD approximation scheme for point cloud problems that
balances time loss and computational accuracy based on point
cloud data characteristics. Our experimental results confirm
that our algorithm achieves the smallest gap with the real
EMD within an acceptable time range and yields the best re-
sults in end-to-end training.

Introduction
Understanding the environment is a fundamental necessity
across various domains, ranging from autonomous driving
and intelligent transportation systems to robotics and mixed
reality applications. The success of these cutting-edge tech-
nologies heavily depends on the capacity of a system to
interact with and accurately perceive its surroundings. In
this regard, point clouds have emerged as a pivotal element
in environmental sensing, and their generation can be fa-
cilitated by diverse technologies like LiDAR (Light Detec-
tion and Ranging) (Reutebuch, Andersen, and McGaughey
2005). Point clouds provide a rich representation of the en-
vironment and can capture detailed geometrical and spatial
information, making them invaluable in various tasks related
to perception, localization, mapping, and object recognition.
As a result, point cloud data has become a fundamental input
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for many state-of-the-art algorithms and systems in modern
sensing and navigation applications.

However, one challenge of using LiDAR-generated spa-
tial point clouds is that they may fail to fully depict the sur-
face of the observed object due to occlusions or the inabil-
ity to arrange sensors at sufficient angles. As a result, the
captured point cloud data may only provide a partial repre-
sentation of the object. This limitation can have a significant
impact on subsequent point cloud processing tasks, such as
point cloud registration, object detection, and classification.
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Figure 1: The illustration of point cloud completion task.

Numerous studies (Achlioptas et al. 2018; Yuan et al.
2018; Sarmad, Lee, and Kim 2019) have successfully show-
cased the efficacy of employing learning-based techniques
for 3D shape completion, offering significant advantages for
subsequent processing tasks. As depicted in Figure 1, deal-
ing with irregular and unordered point clouds introduces
substantial challenges in this context. Accurately quantify-
ing the distance between point cloud pairs, accounting for
shape discrepancies in the output loss of a deep learning
model concerning the ground truth, and facilitating the up-
date of the model parameters pose significant hurdles due to
the inherent complexities of point cloud data.

Fan et al. (Fan, Su, and Guibas 2017) introduced two
permutation invariant functions, namely Chamfer Distance
(CD) and Earth Mover’s Distance (EMD). While CD is ef-
ficient, it does not penalize uneven distributions, leading to
shape detail fluctuations (Achlioptas et al. 2018). EMD is
more sensitive to shape detail and density distribution dif-
ferences (Liu et al. 2020), which can achieve more accu-
rate comparison between a pair of point clouds. However,
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EMD is computationally expensive, which is not scalable to
be used in deep learning models (with large number of iter-
ations) for supporting large data. As such, researchers often
opt for Chamfer Distance (CD) over Earth Mover’s Distance
(EMD), which can significantly degrade the quality of point
cloud completion.

To address the computational challenges of EMD, Fan et
al. (Fan, Su, and Guibas 2017) develop an iterative (1+ϵ)-
approximation method. However, this method still cannot
be scalable to large point cloud sizes. Liu et al. (Liu et al.
2020) propose an alternative approach, which can handle
larger point clouds and only takes O(n) memory.

However, our experiments (cf. Table 1, where two existing
methods are denoted as emd1 and emd2.) show both meth-
ods significantly deviate from the actual EMD, leading to
estimation errors and increased gradient update noise in the
training process.

MSE emd1 emd2 Ours
Sparse 1388.26 912.78 121.79
Dense 1014.70 1131.23 408.13

Table 1: The mean squared error (MSE) of different meth-
ods for estimating EMD. Experiments were conducted on
“Sparse” point clouds (1024 points) and “Dense” point
clouds (8192 points), calculating the MSE between the com-
puted results and the actual EMD. Here, two widely used
EMD loss functions (Fan, Su, and Guibas 2017; Liu et al.
2020) are denoted as emd1 and emd2.

To tackle the challenge of accurate EMD approximation
within a reasonable time frame, we propose the Adaptive
Auction with Intial Price Algorithm (AAIP)1. This approach
is built on the auction algorithm, using successive shortest
path principles to redefine distance relationships between
specific spatial points. We have proven that initializing the
auction algorithm with these initial prices converges to the
assignment outcomes of the original algorithm and reduces
the number of iterations in the training process.

Our principal contributions can be succinctly encapsu-
lated as follows.

• We propose a novel concept, the Initial Prices of auction
algorithm, to accelerate the convergence of the algorithm
while ensuring the correctness of the results. We theoret-
ically demonstrate its correctness and effectiveness.

• We propose an efficient algorithm for computing the Ini-
tial Prices. By utilizing initial prices and the data fea-
tures, we introduce a novel adaptive EMD approximation
scheme for shape loss function.

• We conduct sufficient experiments on point cloud data
of various categories and sizes. The experimental results
show that the proposed approach can effectively reduce
the error in the shape loss function, which can further
achieve the best training results compared with the exist-
ing methods.

1The code is available at https://github.com/coldbubbletea/
AAIP-Point-Cloud-Completion.

Related Work

Point cloud completion via learning-based methods. Over
recent years, many deep learning methods have been devel-
oped for the point cloud completion problem, which can be
further categorized into two camps, namely (1) voxel-based
methods and (2) point-based methods.

Voxel-based methods (Dai, Qi, and Nießner 2017; Han
et al. 2017; Sharma, Grau, and Fritz 2016; Stutz and Geiger
2018; Liu et al. 2019a,b) first represent each point cloud as
a set of voxels and then train the learning-based models for
these point cloud data. However, it is hard to accurately tune
the voxel size, which can either result in huge computational
costs (and huge memory space consumption) or low accu-
racy during the learning process. Unlike the voxel-based
methods, point-based methods (Qi et al. 2017; Li et al. 2018;
Yuan et al. 2018; Sarmad, Lee, and Kim 2019; Tchapmi
et al. 2019; Chen, Chen, and Mitra 2020) adopt different
loss functions for directly measuring the distance between
data points in a pair of point clouds in order to train the
learning-based models, which, to the best of our knowledge,
can achieve better accuracy for this point cloud completion
problem compared with the voxel-based methods.

Loss function for point cloud completion. There are two
types of commonly used loss functions (Fan, Su, and Guibas
2017) for point-based methods, which are Chamfer Distance
(CD) and Earth Mover’s Distance (EMD). Compared with
EMD, CD is unable to penalize errors in shape details and is
insensitive to differences in density distribution (Yuan et al.
2018; Achlioptas et al. 2018; Liu et al. 2020). Therefore, us-
ing EMD as the loss function in a learning-based model can
provide more accurate results for the point cloud completion
problem. However, EMD suffers from huge computational
cost, which is not scalable to large-scale point cloud data.

Although numerous approximation methods have been
proposed to boost the efficiency of computing EMD for
the image retrieval tasks (Jang et al. 2011; Cuturi 2013;
Solomon et al. 2015; Altschuler, Weed, and Rigollet 2017;
Chan, Yiu et al. 2019), using these methods for the point
cloud completion problem needs to construct the cost ma-
trix (with quadratic computational cost) between each pair
of point clouds. Hence, these methods still suffer from huge
computational burden (especially for the point cloud with
large number of data points).

Recently, Fan et al. (Fan, Su, and Guibas 2017) have di-
rectly proposed the EMD approximation scheme for point
clouds, which has been widely adopted in many learning-
based point cloud completion networks (Yuan et al. 2018;
Chen, Chen, and Mitra 2019; Wu, Miao, and Fu 2021;
Chang, Jung, and Xu 2021). However, this approach still
takes O(n2) memory space, limiting its applicability to large
point cloud datasets. Later, Liu et al. (Liu et al. 2020) further
propose the auction-based (Bertsekas 1979) loss function es-
timation method (with O(n) memory space), which is scal-
able to large-scale point cloud datasets. However, compared
with our methods, all these approximation methods are still
not accurate for computing EMD (cf. Table 1).
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Preliminary
Point cloud completion problem statement. As shown
in Figure 1, consider S

′
as an ensemble of spatial points,

situated on the visibly observed facets of an object, ac-
quired through singular or sequential observations via Li-
DAR. Concurrently, envisage T as a densely populated col-
lection of spatial points, uniformly distributed across both
the observed and unseen facets of the said entity. In this con-
text, the shape completion problem is framed as the predic-
tion of T using learning based methods, given S

′
as input.

Loss function of shape error. It is key to note that S
′

is
not necessarily contained within T due to independent sam-
pling. This absence of direct point-to-point correspondence
between S

′
and T means that the chosen metric in the loss

function computation of shape error, measuring the distance
between S and T, should exhibit robust permutation invari-
ance and accurately reflect shape error. This choice directly
impacts evaluative efficacy and, consequently, the quality of
point cloud prediction.

Fan et al. (Fan, Su, and Guibas 2017) utilized Earth
Mover’s Distance (EMD) as a loss function, which demon-
strates greater robustness compared to Chamfer Distance
(CD), for point cloud completion problems.

The formulation of EMD in the context of point cloud
distance measurement is shown as follows.

EMD(S,T) = min
ϕ:S→T

1

|S|
∑
x∈S

∥x− ϕ(x)∥2 (1)

where ϕ(x) denotes a bijection that establishes a one-to-one
mapping relationship between point clouds S and T, mini-
mizing the average distance of corresponding points.
Auction algorithm on point cloud. The auction algo-
rithm (Bertsekas 1985) is contemplated as an elegant solu-
tion for computing the bijection amidst points within dual
point clouds because parallel computation is straightfor-
wardly achievable, rendering the procedure apt for calculat-
ing EMD as loss function in deep learning model.

The auction algorithm treats the two point clouds as
sources S and sinks T. We will illustrate the algorithmic
process using the example in Figure 2 and display it in Ta-
ble 2. For each independent source si ∈ S and sink tj ∈ T
pairing, there exists a gij , which represents the source’s eval-
uation of the sink’s attractiveness, expressed as a formula as

gij = C − dij , (2)

where C is a constant here to ensure positive value, and dij
represents the Euclidean Distance between si and tj . As-
sume C = 20 in the example. In the auction algorithm, each
sink in the graph is given a numerical quantity, often denoted
as µj , known as the price, which represents the cost of as-
signing that particular sink. Initially, the price for every sink
is usually set to 0.

During each round, as illustrated in Table 2, each source
si identifies a sink tj that maximizes (gij − µj), to choose
which sink is the optimal choice. As an example, s1, s2, s3
place their bids for t2 in the first round. If the sink tj is
presently unassigned or if si offers a higher bidding price

s2

s1 s2 s3

t1 t2 t3

4.2
11.2

3.5
4.9 3.1

2.8
4.0

6.4 7.2

EMD = 3.5 + 7.2 + 3.1 = 13.8
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Figure 2: An example illustrates the efficacy of the method.
Two point clouds are regarded as sources and sinks, with
the objective of finding an one-to-one mapping of three-
dimensional points that satisfy optimization conditions. Fi-
nally, the global minimum distance EMD is determined.

than the other sources bidding on tj , then si is assigned to
tj , and the price µj is updated to the bidding price of si
accordingly. The bidding price denoted as β for a source
is established by appending a bid increment to the exist-
ing price µj of a sink tj . This bid increment lies within the
range of [ϵ, π+ϵ], where ϵ is a pre-established relaxation pa-
rameter, and π represents the profit discrepancy between the
optimal and suboptimal choices for si in its present state.
However, if si does not offer the highest bidding price, it
must seek another sink in the following round. In the exam-
ple, the bid increment attains its maximum value (π + ϵ),
with ϵ = 0.01. As s2 presents the highest bidding price 0.81
(β12 = 0.71, β22 = 0.81, β32 = 0.31), t2 is ultimately as-
signed to s2, with its price updated to 0.81. This process is
repeated until each source is assigned a sink. As shown in
Table 2, the algorithm proceeds for three more rounds as
outlined in the table, culminating in a one-to-one mapping,
denoted by the red lines in Figure 2. The pseudocode for the
specific algorithm is provided in the Appendix.

Round Bid Price Update
s1 s2 s3 t1 t2 t3

Init. - - - 0 0 0
1 t2: 0.71 t2: 0.81 t2: 0.31 0 0.81 0
2 t1: 0.71 - t1: 0.91 0.91 0.81 0
3 t2: 1.41 - - 0.91 1.41 0
4 - t3: 0.62 - 0.91 1.41 0.62

Table 2: The bidding and price update process of the auction
algorithm across different rounds.

Although the auction algorithm has been widely used as
the fundamental algorithm for solving the EMD in point
cloud problems due to its outstanding parallel capabilities,
its application still presents challenges. Firstly, its heuristic
nature results in significantly varying time costs for differ-
ent data characteristics, which are difficult to predict. More-
over, for some point cloud data, the algorithm requires a
large number of iterations before it can stop. These factors
are detrimental to the iterative computation process in deep
learning with large dataset.
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Methodology
Motivating Example
In the example provided in Figure 2, the auction algorithm
requires at least four rounds to complete the calculation for
optimal assignment. However, if we set the initial prices as
µ1 = 0.80, µ2 = 1.00, µ3 = 0, it becomes apparent in Ta-
ble 3 that merely a single auction round is necessary to fi-
nalize the assignment.

Round Bid Price Update
s1 s2 s3 t1 t2 t3

Init. - - - 0.80 1.00 0
1 t2: 1.41 t3: 0.21 t1: 0.91 0.91 1.41 0.21

Table 3: The bidding and price update process of the auction
algorithm with initializing the price.

As shown in this example, the auction iteration is due
to different source points selecting the same sink during
the process, concurrently boosting the price of the sink
points. The essence of the auction algorithm is to iteratively
heighten the cost of selecting a sink, thereby reducing the
number of sources interested in that sink. This continues
until all unsuitable sources (those with better options) are
eliminated, achieving an one-to-one assignment. Thus, can
we adopt certain strategies to initialize prices in the auc-
tion algorithm, ensuring the same results but with a quicker
elimination of unsuitable sources?

Auction Algorithm with Initial Prices
In the widely used auction algorithm, the price of each sink
is often initialized at 0. Setting prices incorrectly could po-
tentially deteriorate the assignment, thus we propose a guar-
anteed initial price that ensures the final optimized assign-
ment A′ remains unaffected and accelerates the convergence
of the algorithm.

Correctness of initial prices. Yet, we discern that given a
local assignment A− of S− ⊆ S and T− ⊆ T, denoting the
final selling price of the assigned tj ∈ T− in A− as µ−

j . We
propose the initial price, which is described in Definition 1.

Definition 1 (Initial prices, ∆). We say the set of initial
prices ∆ is valid if 0 ≤ δj ≤ µ−

j , ∀tj ∈ T−.

When each initial price δj ∈ ∆ is employed to initial-
ize the corresponding sink price µj for each sink tj in the
auction algorithm, we demonstrate that the final assignment
remains correct. This is encapsulated in our proposed Theo-
rem 1.

Theorem 1 (Correctness of initial prices). By initializing
the price of the corresponding sink with the initial prices
∆, the final assignment A′ is equivalent to the result A∗ of
the auction algorithm without using initial prices for price
initialization, that is, A′ ≡ A∗.

The proof of Theorem 1 is provided in Appendix. In sim-
ple terms, the auction algorithm ensures that the selling price
of a sink in a local optimal assignment does not exceed its
selling price in a globally solved problem. This implies that

even if we initialize the initial price δj for tj at a value less
than or equal to µ−

j , it will eventually be procured by a suit-
able source at a higher (correct) selling price by the auction
process. This maintains the consistency of the assignment.

The introduction of Theorem 1 provides a solvable upper
bound when we need to initialize the price of the sink. As
long as we do not exceed this upper bound when assigning
the price, we can ensure that the results remain unchanged.

Effectiveness of initial prices. Furthermore, the initial price
strategy can expedite the convergence speed of the auc-
tion algorithm towards its final result by causing unsuitable
sources to cease their bidding for a specific sink prema-
turely. This is stated in our proposed Lemma 1.

Lemma 1. The initial price can reduce the upper bound of
the number of iterations required by the Auction Algorithm.

For proof details, please refer to the Appendix. As demon-
strated in Table 3, the initialization of prices leads to a sce-
nario where the unsuitable source s2 cannot bid for t2 in
the first round of auction, and instead directly selects the
optimal choice t3. This results in the algorithm completing
the assignment within a single iteration. Clearly, the core
of the initial prices is to reconstruct the relationship between
sources and sinks in the initial state, which reduces the num-
ber of unsuitable sources, thereby accelerating the conver-
gence speed. Thus, based on Lemma 1, we prove that the
proposed initial price, when used to initialize prices, indeed
accelerates the convergence of the auction algorithm.

Configuration of Initial Prices, ∆
However, this approach presents practical challenges. Since
the upper bound, µ−

j , for the initial price δj for tj must be
obtained through the auction algorithm to find a local assign-
ment, considering the unpredictability of the computational
cost associated with solving such problem using the auction
algorithm (as per Definition 1), it is possible that the overall
computational cost of (1) determining the initial price ∆ and
(2) solving the final assignment A′

using the initial price ∆
could surpass that of the original Auction Algorithm.

In this endeavor, our aim is to configure the initial prices
in a manner that fulfills the following requirements: (1) en-
suring the fulfillment of Theorem 1, which states that for
every task tj in the set T, δj must be less than or equal to
µ−
j , and (2) providing a solution cost that can be controlled,

thereby reducing the overall computational burden.

Initial prices derived from a local assignment. To begin,
let us delve into an initial price that not only adheres to the
conditions of Theorem 1, but also can be computed using the
result of a local assignment. Let A− be the local assignment
and dij denote the Euclidean distance between point si ∈
S and point tj ∈ T. The specific content is presented in
Lemma 2.

Lemma 2. Assuming that (si, tj) is an assigned pair in a
local assignment A−. Furthermore, within this assignment,
∀sp ∈ (S− − si), the sink assigned to sp is denoted as
tq ∈ T−. Considering the value αj obtained by evaluating
maxsp∈S− {dpq − dpj + ϵ}, we can set δj = max {0, αj}.
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This choice ensures that δj satisfies Theorem 1, specifically
δj ≤ µ−

j .

We leave the proof in Appendix. As per the insights pro-
vided by Lemma 2, we have the flexibility to relax the value
of δj by reducing it from the price upper bound µ−

j (from
the Auction algorithm) to max {0, αj} (from the local as-
signment). Remarkably, this adjustment preserves the assur-
ance that the final assignment remains in alignment with the
original auction algorithm. This implies that we merely ne-
cessitate the acquisition of a locally optimal assignment, and
through the relationship of tj , utilizing the local assignment
will still yield a δj that satisfies Lemma 2.

Computing a local assignment. According to Lemma 2,
our subsequent challenge is to efficiently determine the lo-
cal assignments required by the lemma. The local assign-
ment can be transformed into a minimum cost flow problem
(MCF) in directed bipartite graphs (Waissi 1994). In the con-
text of spatial point cloud issues, each edge e satisfies: a ca-
pacity of 1, a cost equivalent to the distance between points
for e(vi, vj). Several algorithms exist to solve the MCF
problem, with the Hungarian algorithm (Kuhn 1955) and the
Successive Shortest Path Algorithm (SSPA) (Derigs 1981)
being the most commonly used due to their low complexity.
However, the Hungarian algorithm requires to construct a
cost matrix makes it unsuitable for high-density point cloud
problems. SSPA, on the other hand, is more suited for this
task, as it operates directly on the flow graph and iteratively
computes the assignment via shortest path searches. Specif-
ically, we utilize SSPA to obtain the local assignment A−

on the bipartite graph (S−,T). The outcome A− produced
by SSPA successfully fulfills the prerequisites outlined in
Lemma 2 for determining the initial prices. We name this
calculation process as Initial Prices Algorithm (InPrA).

In the next section, we shall delve into an even more
streamlined approach to compute the local assignment,
leveraging a simplified graph strategy.

Optimization Strategies
In this section, we will explore advanced optimization
techniques for algorithms, enhancing computational speed,
strengthening the adaptability of algorithms as loss function
solvers, and finalizing the algorithm design.

Simplified graph strategy. We employ SSPA for local opti-
mal assignment and determine the initial prices. Like many
others, the time complexity grows with spatial points, com-
plicating the shortest path identification in a directed bipar-
tite graph and increasing computation time. The Simplified
Graph Incremental Algorithm (SIA) (U et al. 2010) miti-
gates this complexity by preserving a novel subgraph in each
loop, where edges are added until a specific condition is
met. This ensures the shortest path found on the subgraph
also represents a shortest path in the original graph. SIA in-
volves a k-nearest neighbour search to establish a simplified
graph, for which we use an R∗-Tree (Beckmann et al. 1990)
to pre-process spatial point cloud data. We believe any data
structure that facilitates a k-nearest neighbour search will
be appropriate for this algorithm. Upon applying SIA, the

resolution of local optimization assignment A− is achieved,
followed by the search of max {0, αj} of tj through the es-
tablished shortest path tree, expediting the computation of
the initial prices.

Algorithm 1: Source Sorted Algorithm (SSA)
Input: Spatial point cloud S and T (with size n)
Output: Selected point list S−

1 Initialize a (s, t)-pair list H , a point set CD , a point list S−

2 foreach si ∈ S do
3 tj∗ ← argmaxtj∈T{gij}, push pair (si, tj∗) to H

4 Sort H based on t in (s, t)-pair
5 for 1 ≤ i ≤ n do
6 if H(i).t = H(i− 1).t then
7 insert point si to CD

8 S∗ ← sort S with priority s1 > s2, where s1 ∈ CD and
s2 ∈ (S− CD)

Computation order in SSPA/SIA. To meet training cost
requirements, we have imposed a time constraint that may
restrict the involvement of only a subset of source points
S−. Instead of randomly selecting source points, we pri-
oritize the inclusion of those source points that bid for the
same sink points in the auction algorithm. This approach
(cf. Algorithm 1) has proven beneficial, as it increases the
number of sink points that receive initial prices. Our exper-
iments have further validated this observation, reinforcing
the effectiveness of this selective approach in the SSPA/SIA
algorithm.

Algorithm 2: Auction with Initial Price Algorithm
1 S∗ ← SSA(S,T)
2 S−← getTopK(S∗)
3 A− ← SIA(S−,T)
4 ∆← InPrA(A−)
5 Initialize µj to be δj ∈ ∆ for all tj ∈ T

6 A
′
← Auction Algorithm with δj for all tj

Main algorithm. Thus, we have finalized the workflow for
the Auction with Initial Price algorithm as described in Al-
gorithm 2. It sorts the sources by SSA, selects k points as
S−, calculates local assignment A− using SIA, computes
the initial price through InPrA, and finally initializes the auc-
tion algorithm’s price to the computed initial price. This pro-
cess culminates in the final assignment.
Adaptive iteration strategy. The existing methods fre-
quently encounter the need to abruptly terminate Earth
Mover’s Distance (EMD) calculations due to the heavy com-
putational burden and extensive iterations involved in deep
learning. Contrary to these methods lacking robustness, we
propose an approach that adaptively adjusts the algorithm’s
time cost based on data characteristics.

Despite the ability to arbitrarily select S− in local as-
signments for SIA resolution, fixing the number of assign-
ment points is not robust in practical point cloud problems
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with diverse data features, potentially leading to insufficient
solution points or prolonged solving time. Conversely, by
restraining the SIA algorithm under certain conditions, the
number of completed local assignments, or loops, can better
reflect data characteristics. In our method, we set a fixed total
search edge limit for the construction of the SIA subgraph.
This limit is determined by the size of the point cloud data,
and when reached, it signals the end of local assignment
computation. As the SIA carries out more loops, it needs
fewer edges on average to construct the subgraph used for
the shortest path search. This efficiency translates to fewer
suitable match candidates in one point cloud for a point in
another, which in turn reduces the chance of encountering
competitors. The end result is a decrease in the iterations
required for the auction algorithm to conclude. Conversely,
fewer loops necessitate increased iterations. Based on this,
an Adaptive Iteration Strategy is proposed as follows: If the
spatial point cloud terminates at the kth loop when using
SIA to calculate the local assignment, then the auction algo-
rithm with initial price iteration number i satisfies

i = ω|S|k−1 + λ, (3)

where i is informed by the provided scale factor ω and the
ratio of the number of rounds k that the SIA can complete
within the given computational limit to the size of |S|. The
symbol λ signifies the minimum number of rounds required
to complete the auction. Thus, if a point cloud is readily
solvable by the auction algorithm, the algorithm will corre-
spondingly decrease the number of iterations. Conversely,
if the problem is more complex, the algorithm will aug-
ment the number of iterations as much as possible. Finally,
should the auction algorithm terminate due to adaptive it-
eration while there remain unassigned points, in accordance
with MSN (Liu et al. 2020) proposed, we assign these points
to the nearest counterparts in the alternate point cloud, which
is deemed as their respective distances.

Integrated with the above optimization strategy, this sec-
tion completes the core design and elucidation of the
proposed EMD approximation algorithm for spatial point
clouds. With this optimization strategy, we have expanded
our Initial Price Algorithm into an Adaptive Auction Initial
Price Algorithm (AAIP).

Experiments
Experimental Setup

Dataset. In this study, the ShapeNet CAD dataset (Chang
et al. 2015) was used for spatial point cloud data. This
dataset was chosen to ensure the fairness of our experiments,
as it is used for training and testing by the models under our
investigation. We conducted experiments with point clouds
uniformly selected from eight categories, which include wa-
tercraft, cabinet, table, airplane, car, chair, sofa, and lamp.
The complete point clouds, serving as the ground truth, were
produced through uniform sampling from the model’s mesh
surfaces, while partial spatial point clouds were simulated
using back-projected depth images (Yuan et al. 2018). No-
tably, these partial point clouds were collected from eight
random viewpoints of each model to more closely reflect

real-world conditions. Ultimately, we generated a total of
64000 pairs of point clouds for training and 9600 pairs of
point clouds for testing.
Compared methods. Two predominant EMD loss function
algorithms are employed in the realm of point cloud com-
pletion problems: initially, Fan et al. introduces an approx-
imation scheme, employed as an estimation of EMD amid
point cloud pairings, consequently facilitating shape loss
computations (Fan, Su, and Guibas 2017). In the experimen-
tal section of this paper, such an algorithm is distinguished
as “emd1”. Subsequently, MSN (Liu et al. 2020) presents
an enhanced approximation approach predicated on the auc-
tion algorithm, necessitating solely O(n) memory, and this
methodology is referred to as “emd2”. Our elucidated EMD
estimation algorithm is denoted as “AAIP”.

Experimental Results from Point Cloud
Completion Networks
We scrutinize the empirical outcomes of the deep learning
model for point cloud completion, utilizing diverse EMD ap-
proximation strategies in an end-to-end fashion.
Backbone models. Our proposed algorithm AAIP is inde-
pendently applied to two deep learning point cloud comple-
tion models, PCN (Yuan et al. 2018) and MSN (Liu et al.
2020). PCN is a two-stage point cloud generation model and
its superior performance has instigated a cascade of subse-
quent methodologies. Many point cloud completion mod-
els have adopted the coarse-dense network architecture pro-
posed by PCN. Due to the limitations of the EMD approx-
imation scheme it employs, PCN uses CD/EMD as the loss
function for its coarse output (1024), but only uses CD for
the loss function of its dense output (16384). MSN directly
generates a dense point cloud as coarse output, which is fur-
ther optimized to produce the final point cloud output. Dif-
ferent from PCN, MSN exclusively uses EMD as the loss
function and maintains 8192 points for both the coarse out-
put and the final output. To ensure a fair comparison of
model functionalities, we replaced their respective EMD ap-
proximation schemes with our proposed AAIP as the loss
function, to present the experimental results.
Comparison results. The experimental results conducted
on PCN and MSN are presented respectively in the Table 4.
In line with the standards of other works, we employ the pre-
cise EMD as the criterion for evaluating the quality of model
output. A smaller EMD signifies less shape discrepancy be-
tween the generated point cloud and the ground truth, im-
plying a higher quality of the generated point cloud.

(a) PCN. When acting as the loss function for coarse out-
put, the AAIP outperforms the training results using CD or
emd1, in any categories of training outcomes. However, for
point clouds of complex categories like “lamp”, due to their
intricate topological structures, the CD fails to adequately
penalize the differences in detail shape, resulting in a larger
EMD. Moreover, adopting the AAIP as the loss function on
large-scale dense output has also achieved superior experi-
mental results within the framework of a PCN-based model.

(b) MSN. Given that the shape error calculation of MSN
is entirely anchored on EMD, the overall results it produces
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Methods chair table sofa cabinet lamp car airplane watercraft average
PCN (CD+CD) 62.46 66.88 52.85 61.07 102.88 50.86 38.17 52.22 60.93

PCN (emd1+CD) 62.83 59.94 52.53 54.91 69.50 54.12 33.22 55.30 55.29
PCN (AAIP+CD) 52.73 49.77 48.21 49.66 62.95 38.15 27.22 44.13 46.60
PCN (CD+AAIP) 43.23 43.54 34.58 35.56 63.55 31.13 25.79 35.96 39.17

MSN (emd2) 33.12 31.12 31.11 36.13 36.66 32.90 18.70 25.66 30.68
MSN (AAIP) 28.99 28.25 28.48 34.18 31.53 31.45 16.58 22.58 27.71

∗Referring to PCN, the former term inside parentheses indicates the loss function type utilized for the coarse output,
while the latter term denotes the loss function type employed for the dense output.

Table 4: The training results (EMD×103) of point cloud completion network on the ShapeNet dataset.

are superior to PCN, with the output of completed point
clouds being closer to the ground truth. This is particularly
noticeable in complex point cloud types such as the lamp
class, where due to the EMD’s precise reaction to local shape
variations, it aids in the completion of complex shapes be-
yond the intrinsic differences of the model itself. Similarly,
results of AAIP outperform of emd2 across all categories.
Thus, the two sets of experimental results demonstrate the
superior performance of AAIP in deep learning models for
point cloud completion, where it serves as an approximation
scheme to solve the loss function in response to EMD.

Performance of EMD Approximation
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Figure 3: The accuracy and efficiency results (in terms of
mean square error and time, respectively) of different EMD
estimation methods for the point cloud completion problem,
where we compare our proposed methods, AIP (w/o AI) and
AAIP (+ AI), with two most widely used approaches (Fan,
Su, and Guibas 2017; Liu et al. 2020), emd1 and emd2.

We conduct experiments to analyze the accuracy and effi-
ciency of various EMD approximation schemes across point
cloud data of different sizes. All experimental data are de-
rived from the training of actual point cloud completion
models, with specific details presented in the Appendix.

Within the bar chart section, it can be observed that across
different point cloud size datasets, the EMD estimates of
emd1 and emd2 diverge significantly from the actual EMD,
whereas the MSE between the EMD estimated by AAIP (for
both settings) and the actual EMD is substantially smaller
than the other two. Conversely, AAIP maintains a low MSE

in EMD calculations across various point cloud sizes. This
suggests that AAIP provides superior accuracy in EMD es-
timation between point cloud pairs and offers robustness
across different point cloud sizes. Within the line chart sec-
tion, emd1 exhibits the swiftest computational speed, with a
marginal difference between our methods and emd2. In or-
der to complete the estimation quickly, emd1 sacrifices the
ability to correctly assign most points, leading to a signifi-
cant discrepancy from the true value. These results illustrate
that, compared to emd2, AAIP guarantees the performance
of the EMD approximation algorithm at the expense of min-
imal time cost, establishing a significant precision gap with
other algorithms. Given that emd2 is a widely adopted ap-
proximation scheme, such a time cost is acceptable.

Ablation Study on Optimization Strategy
Adaptive iteration strategy. We conducted experiments
comparing the use of an Adaptive iteration strategy (denoted
as “AAIP (+AI)”) and its absence (designated as “AIP (w/o
AI)”). After computing the initial price, AIP (w/o AI) termi-
nated the auction algorithm through a fixed number of itera-
tions. On point cloud data of varying sizes, the EMD estima-
tion accuracy of AIP (w/o AI), due to the initial prices, has
already surpassed that of emd1 and emd2. However, the ef-
ficiency and accuracy of the method have further improved
after the use of the adaptive iteration strategy. This improve-
ment is particularly evident in larger point cloud datasets,
which validates that our proposed optimization strategy can
effectively enhance the method’s effectiveness based on the
characteristics of the data.

Conclusion
In this paper, we introduce the Adaptive Auction with Ini-
tial Price Algorithm, designed to efficiently and accurately
estimate the shape loss function in point cloud completion
problems. Initially, we propose the use of initial prices to
expedite the convergence of the auction algorithm, coupled
with a theoretical proof. Then we propose an efficient cal-
culation method for initial prices, based on the successive
shortest path. In accordance with the practical scenario of
loss function in deep learning models, we propose optimiza-
tion strategies that adaptively aligns with data characteris-
tics. Through experiments conducted on eight different cat-
egories of point cloud data and two distinct deep learning
models, we demonstrate the effectiveness and superiority of
the proposed method.
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