
Spatially Compact Dense Block Mining in Spatial Tensors
Weike Tang

tangweike2022@email.szu.edu.cn

College of Computer Science & Software Engineering

Shenzhen University

Shenzhen, China

Dingming Wu
∗

dingming@szu.edu.cn

College of Computer Science & Software Engineering

Shenzhen University

Shenzhen, China

Tsz Nam Chan

edisonchan@szu.edu.cn

College of Computer Science & Software Engineering

Shenzhen University

Shenzhen, China

Kezhong Lu

kzlu@szu.edu.cn

College of Computer Science & Software Engineering

Shenzhen University

Shenzhen, China

Abstract
Spatial tensors have been extensively used in a wide range of appli-

cations, including remote sensing, geospatial information systems,

conservation planning, and urban planning. We study the problem

of Spatially Compact Dense (SCD) block mining in a spatial tensor,

which targets for discovering dense blocks that cover small spatial

regions. However, most of existing dense block mining (DBM) al-

gorithms cannot solve the SCD-block mining problem since they

only focus on maximizing the density of candidate blocks, so that

the discovered blocks are spatially loose, i.e., covering large spatial

regions. Therefore, we first formulate the problem of mining top-
𝑘 Spatially Compact Dense blocks (SCD-blocks) in spatial tensors,

which ranks SCD-blocks based on a new scoring function that takes

both the density value and the spatial coverage into account. Then,

we adopt a filter-refinement framework that first generates candi-

date SCD-blocks with good scores in the filtering phase and then

uses the traditional DBM algorithm to further maximize the density

values of the candidates in the refinement phase. Due to the NP-

hardness of the problem, we develop two types of solutions in the

filtering phase, namely the top-down solution and the bottom-up

solution, which can find good candidate SCD-blocks by approxi-

mately solving the new scoring function. The evaluations on four

real datasets verify that compared with the dense blocks returned

by existing DBM algorithms, the proposed solutions are able to

find SCD-blocks with comparable density values and significantly

smaller spatial coverage.

CCS Concepts
• Information systems→ Data mining; • Theory of computa-
tion→ Design and analysis of algorithms.

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1245-6/25/08

https://doi.org/10.1145/3690624.3709221

Keywords
Spatially Compactness, Dense Block, Spatial Tensor

ACM Reference Format:
Weike Tang, Dingming Wu, Tsz Nam Chan, and Kezhong Lu. 2025. Spatially

Compact Dense Block Mining in Spatial Tensors. In Proceedings of the 31st
ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1
(KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3690624.3709221

1 Introduction
A tensor is a relation with 𝑁 attributes, a.k.a a multi-dimensional

array with 𝑁 indices. Tensor analysis [1, 6] is an important field

in data science and data mining communities. Among most of the

tensor analysis tools, dense block mining (DBM), a.k.a. dense sub-

tensor mining, is an important operation for discovering patterns

from a dataset, which has been extensively used in different appli-

cations. Some representative examples include network intrusion

detection [23, 27], retweet boosting detection [15, 16], synchronized

behaviour detection [5, 12, 32], and genetics applications [23, 25].

The spatial tensor is one important type of tensor where two

of the dimensions are spatial dimensions, i.e., the longitude and

the latitude dimensions. The two spatial dimensions of the tuples

in the spatial tensor indicate the spatial locations of the tuples. It

enables the representation and analysis of complex spatial data,

aiding in remote sensing [24], geospatial information systems [21],

conservation planning [22], and urban planning [4]. Traditional

DBM aims for mining blocks with high density in a tensor. Dif-

ferently, we study the problem of Spatially Compact Dense (SCD)

block mining in a spatial tensor, which targets for discovering dense

blocks that cover small spatial regions. SCD-block mining is pivotal

in a wide range of applications, such as identifying and analyzing

localized abnormalities in medical images [20], compressing and

representing large-scale urban planning maps [19], and identifying

localized trends or anomalies in high-frequency trading data and

providing insights into market behavior [7].

However, most of existing DBM algorithms [28, 29, 32] cannot

solve the SCD-block mining problem since they only focus on max-

imizing the density of candidate blocks, so that the discovered

blocks are spatially loose, i.e., covering large spatial regions. As

an example, Figure 1c plots the spatial locations of the tuples con-

tained in the top-3 dense blocks found by the state-of-the-art DBM

algorithm M-Biz [28] on a check-in dataset Gowalla_NA in North

1349

https://doi.org/10.1145/3690624.3709221
https://doi.org/10.1145/3690624.3709221
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3690624.3709221&domain=pdf&date_stamp=2025-07-20

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Weike Tang, Dingming Wu, Tsz Nam Chan, and Kezhong Lu

America. It is observed that each of these blocks covers a large

spatial region, i.e., almost the whole spatial region of the dataset.

In contrast, the SCD-blocks studied in this paper are exemplified in

Figures 1a where the three SCD-blocks cover small spatial regions.

Each SCD-block represents a group of users visiting a set of nearby

places, which indicates that these users may share similar living

habits.

To solve the SCD-block mining problem, one may consider two

possible options to extend existing DBM algorithms. One option is

applying existing DBM algorithms on a subregion of the dataset

to obtain SCD-blocks. However, this option fails. As shown in Fig-

ure 1d, algorithm M-Biz is applied on a subregion (the region of

Texas) of dataset Gowalla_NA. Unlike Figure1b, the returned blocks

are still spatially loose, almost covering the entire subregion. The

other option is filtering the discovered dense blocks by imposing a

spatial constraint. However, this option may return no result when

all discovered dense blocks do not satisfy the spatial constraint.

As an example in Figure 7 in the experiment, the top-5 densest

blocks returned by existing DBM algorithms all cover large spatial

regions. If setting the spatial constraint to 0.2, none of the blocks

returned by existing DBM algorithms has the spatial coverage less

than 0.2. The reason why these two options fail is as follows. Exist-

ing DBM algorithms try to remove slices with low mass in order to

obtain blocks with high density. However, this removing operation

is ineffective in reducing the spatial coverage of blocks, so that the

obtained blocks are spatially loose.

Therefore, we ask a question in this paper. Can we discover dense
blocks with compact spatial coverage (shown in Figure 1a) in spatial
tensors? To provide an affirmative answer to this question, we first

formulate the problem of mining top-𝑘 Spatially Compact Dense
blocks (SCD-blocks) in spatial tensors. Compared with the tradi-

tional dense block mining that only takes the density value as the

objective function, the top-𝑘 SCD-blocks are ranked based on a

new scoring function that takes both the density value and the

spatial coverage into account. Then, we adopt a filter-refinement

framework that first generates candidate SCD-blocks with good

scores in the filtering phase and then uses the traditional DBM

algorithm to further maximize the density values of the candidates

in the refinement phase.

In the filtering phase, the way of generating candidate SCD-

blocks determines the density and the spatial coverage of the final

results. In order to discover spatially compact dense blocks, we

develop two types of solutions, namely the top-down solution and

the bottom-up solution, which can find good candidate SCD-blocks

by approximately solving the new scoring function (as computing

the exact value for this scoring function is an NP-hard problem [2,

17]). Specifically, the proposed top-down solution introduces a

partition operation that divides the spatial tensor into sub-blocks,

so that the spatial coverage ratio can be reduced. The challenge

of the partition operation is where to divide the spatial tensor to

get a sub-block with low spatial coverage ratio and high density

value. To tackle this issue, we propose the concave policy. The

proposed bottom-up solution locates all tuples of a spatial tensor in

a two dimensional spatial space. It first divides the two dimensional

spatial space into ℎ × ℎ cells, and then assigns each tuple to the

cell where the tuple is located. Next, candidate SCD-blocks are

generated by merging nearby dense cells. The top-down solution

not only achieves the same approximation guarantee as traditional

DBM algorithms, but also is able to discover SCD-blocks that cannot

be found by traditional DBM algorithms. Although the bottom-up

solution has no approximation guarantee, it is able to discover

fine-grained SCD-blocks.

The evaluations on four real datasets verify that the proposed

solutions are able to find SCD-blocks, such that compared with the

dense blocks returned by existing DBM algorithms, the SCD-blocks

have comparable density values and significantly small spatial cov-

erage. Since the top-down solution and the bottom-up solution

approach the problem differently, their results have different fea-

tures. In general, the spatial coverages of the SCD-blocks found

by the bottom-up solution are smaller than that found by the top-

down solution. In the datasets used in the experiment, the top-down

solution discovers country-level SCD-blocks and the bottom-up

solution discovers city-level SCD-blocks. The SCD-blocks with

different levels of granularity may be useful for various levels of

decision making.

The remainder of the paper is organized as follows. Related

work is reviewed in Section 2. Section 3 first introduces the prob-

lem of mining top-𝑘 SCD-blocks and relevant concepts, and then

describes the filter-refinement framework that is applied for solv-

ing the problem. The top-down solution is proposed in Section 4

and the bottom-up solution is proposed in Section 5. Performance

evaluations are presented in Section 6. Conclusions are given in

Section 7.

2 Related Work
Decomposition based algorithms. One type of algorithms uses

tensor decomposition, such as CP Decomposition (CPD) [18] and

HOSVD [18] for dense block mining. For instance, MAF [23] adopts

CPD to spot dense blocks in the network traffic logs. STenSr [26]

models traffic sensor data as a spatio-temporal tensor stream𝑋1, 𝑋2,

· · · , 𝑋𝑡 , · · · where 𝑋𝑡 is a 2-mode tensor contains vehicle informa-

tion of 5 minutes. It applies HOSVD to detect abnormal tensors indi-

cating traffic jams in the stream. SamBaTen [13] and OnlineCP [33]

conduct the incremental tensor decomposition. D-Tucker [14] tries

to reduce the computational cost by slicing the input tensor into

matrices. Then, it computes factor matrices and the core tensor

based on the randomized SVD results on sliced matrices.

Search based algorithms. Previous studies have shown that the

tensor decomposition based algorithms are outperformed by the

search based algorithms [15, 27] in terms of efficiency and accuracy.

The search based algorithms provide guarantees on the density

values of the discovered blocks. We proceed to review state-of-the-

art search based algorithms. CrossSpot [16] discovers dense blocks

that worth inspecting and sorts them in terms of the importance. M-

Zoom [27] removes dimension values one by one in a greedy way

until no dimension value is left. Before removing each dimension

value, a snapshot of the current block is stored as a candidate. The

densest block is the snapshot with the highest density. The density

of the found block is guaranteed to be 1/𝑁 optimal where 𝑁 is the

number of tuples in the tensor. M-Biz [28] is a variant of M-Zoom.

It starts from a seed block, adds or removes dimension values in a

greedy way until the block reaches a local optimum. D-Cube [29]

applies the idea of M-Zoom to disk-resident tensors, allowing to

1350

Spatially Compact Dense Block Mining in Spatial Tensors KDD ’25, August 3–7, 2025, Toronto, ON, Canada

50 75 100
50

75

100

0 100 200
0

100

200

0 100 200
0

100

200

50 75 100
50

75

100

(a) RPA (Gowalla_NA) (b) RPA (Gowalla_Texas) (c) M-Biz (Gowalla_NA) (d) M-Biz (Gowalla_Texas)

Figure 1: Spatially compact dense blocks vs. traditional dense blocks.

process data that are too large to fit in main memory. Following

the idea of M-Zoom, DenseStream [30] incrementally maintains

and updates a dense block in a tensor stream in real time as events

arrive. It maintains the D-order to search for the densest block.

The D-order is updated for every single new tuple. DenseAlert [30]

adopts DenseStream to spot the sudden appearances of dense blocks.

MUST [9, 10] provides better guarantees on the densities of the

dense blocks found by previous studies, such as DenseAlert, M-

Zoom, and M-Biz. AugSplicing [32] is a fast streaming algorithm

that incrementally splices dense blocks of previous detections and

the new blocks detected in new tuples. It outperforms DenseStream

in terms of efficiency.

Variants of dense blocks. Besides traditional definition of the

dense block, variants of dense blocks have also been investigated.

For instance, ISG+D-Spot [3] studies the problem of finding hidden

dense blocks that do not have a high-density signal on all dimen-

sions but on a subset of dimensions. It constructs an information

sharing graph and finds dense subgraphs. CatchCore [11, 12] aims

for detecting hierarchical dense blocks. It formulates the densest

block detection problem in an optimization perspective, so that

gradient-based methods can be applied.

Summary. All the above studies indifferently treat the spatial and

the traditional dimensions in the tensor. None of them studies the

spatial characteristics of the discovered dense blocks. We propose

an interesting scenario of dense block mining where the spatial

region covered by blocks are taken into account. The experiment

results show that existing algorithms find large-sized dense blocks

that cover large spatial regions, whereas our algorithms can dis-

cover moderate- and small-sized dense blocks with compact spatial

coverage.

3 Problem Definition and Framework
3.1 Problem Definition
Notations for spatial tensors. The spatial tensor considered in
this paper is a relation with 𝑑 − 2 traditional dimensions (a.k.a.

attributes), denoted by 𝐴1, 𝐴2, · · · , 𝐴𝑑−2, two spatial dimensions

Υ𝑥 and Υ𝑦 , and a non-negative numerical dimension 𝑋 , denoted

by R(𝐴1, 𝐴2, · · · , 𝐴𝑑−2, Υ𝑥 , Υ𝑦, 𝑋). Spatial dimensions Υ𝑥 and Υ𝑦
denote longitude and latitude dimensions, respectively. For each

tuple 𝑡 ∈ R, we use 𝑡 [𝐴𝑖], 𝑡 [Υ𝑥], 𝑡 [Υ𝑦], and 𝑡 [𝑋] to denote the

values of corresponding dimensions in 𝑡 . The set of distinct values

of a dimension 𝐴𝑖 in R is denoted by R(𝑖) = {𝑡 [𝐴𝑖] | 𝑡 ∈ R}.
Similarly, we have the sets of distinct values of spatial dimensions,

denoted by R(Υ𝑥) and R(Υ𝑦). Tuple 𝑡 exists in the spatial tensor if

and only if 𝑡 [𝑋] ≠ 0. Relation R is an 𝑑-way spatial tensor of size

|R(1) | × · · · × |R(𝑑 − 2) | × |R(Υ𝑥) | × |R(Υ𝑦) |. The number of tuples

in a spatial tensor R is denoted by 𝑛 = |R |.
Notations for spatially compact dense blocks (SCD-blocks).
Let B(𝑖), B(Υ𝑥), and B(Υ𝑦) be subsets of R(𝑖), R(Υ𝑥), and R(Υ𝑦),
respectively. An SCD-block B inR is defined asB(𝐴1, 𝐴2, · · · , 𝐴𝑑−2,
Υ𝑥 , Υ𝑦, 𝑋) = {𝑡 ∈ R | 𝑡 [Υ𝑥] ∈ B(Υ𝑥) ∧ 𝑡 [Υ𝑦] ∈ B(Υ𝑦) ∧ 𝑡 [𝐴𝑖] ∈
B(𝑖), 𝑖 ∈ [1, 𝑑 − 2]}. Block B forms a subtensor of R of size

|B(1) | × · · · × |B(𝑑 − 2) | × |B(Υ𝑥) | × |B(Υ𝑦) |. For convenience
of presentation, when it is clear from the context, we use 𝐴𝑑−1 and
𝐴𝑑 to represent spatial dimensions Υ𝑥 and Υ𝑦 , respectively. A slice
B(𝑎, 𝑖) of block B consists of the tuples whose values of dimension

𝐴𝑖 equal 𝑎, i.e., B(𝑎, 𝑖) = {𝑡 | 𝑡 ∈ B ∧ 𝑡 [𝐴𝑖] = 𝑎}, 𝑖 ∈ [1, 𝑑].
Density measures. The mass of an SCD-block B is defined as

𝑀B =
∑
𝑡 ∈B 𝑡 [𝑋], i.e., the sum of the numerical dimension 𝑋 of

the tuples in B. The cardinality sum of SCD-block B is defined as

𝐷B =
∑𝑁
𝑖=1 |B(𝑖) |. We follow previous studies and adopt the widely

used density measure: the arithmetic average mass [27], i.e.,

𝜌 (B) = 𝑀B
𝐷B/𝑁

. (1)

Spatial coverage ratio. Let Υ𝐿𝑥 (R) and Υ𝑈𝑥 (R) (Υ𝐿𝑦 (R) and Υ𝑈𝑦 (R))
be the minimum and the maximum values of the longitude (latitude)

of the tuples in a spatial tensor R, respectively. The spatial range
of R is defined as SR(R) = (Υ𝑈𝑥 (R) − Υ𝐿𝑥 (R)) · (Υ𝑈𝑦 (R) − Υ𝐿𝑦 (R)).
Similarly, the spatial range of an SCD-block B is denoted by SR(B).
The spatial ratio of SCD-block B is defined as:

𝛿Υ (B) = SR(B)/SR(R) . (2)

Problem statement: top-𝑘 SCD-block mining. (i) Given: a spatial
tensor R, the number 𝑘 of blocks, a scoring function 𝑓 (B). (ii)
Find: 𝑘 distinct SCD-blocks in R with the highest scores in terms

of scoring function 𝑓 (B).
Scoring function 𝑓 (B) aggregates the density 𝜌 and the spatial

coverage ratio 𝛿Υ . We aim for the SCD-blocks with high scores, i.e.,

the blocks with high density values and low spatial coverage ratios.

The following scoring function 𝑓 (B) is used in the experiment.

However, our proposed algorithms can be easily extended to other

forms of scoring functions.

𝑓 (B) = 𝛼 · 𝜌 (B) + (1 − 𝛼) · 𝛿−1Υ (B), (3)

where 𝜌 (B) is the normalized density, 𝛿−1Υ (B) = 1 − 𝛿Υ (B), and
𝛼 ∈ (0, 1).

1351

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Weike Tang, Dingming Wu, Tsz Nam Chan, and Kezhong Lu

1

1

0 4

0 5

9 6 0

4 3 1
1

1

3

2

0

6

0

1
1

B 01 3 0

1

0

Birdy Gary Mark Jim
Buyer

Se
lle

r

Ally

Bob

Jack

Ite
m
A

Tom

(b) Blocks

ID Seller Buyer Item Paytime Address Count
t1 Ally Birdy A Oct-11 (0.8,0.6) 4
t2 Ally Gary A Oct-13 (0.6,0.8) 3
t3 Bob Birdy A Oct-18 (0.2,0.2) 9
t4 Bob Gary A Oct-25 (0.6,0.3) 6
t5 Jack Mark A Oct-13 (0.4,0.5) 5
t6 Jack Jim A Oct-14 (0.4,0.6) 6
t7 Tom Mark A Oct-14 (0.5,0.6) 4
t8 Tom Jim A Oct-15 (0.5,0.7) 3
t9 Jack Mark B Oct-15 (0.2,0.9) 3
...

(a) Tensor (c) Spatial coverage

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Example blocks in a tensor of e-commerce platform.

Example 3.1 (Orders on e-commerce platform). Figure 2 shows
an example spatial tensor R with four traditional dimensions Seller ,
Buyer , Item, and Paytime, longitude and latitude dimensions de-

noted by Address, and a non-negative numerical dimension Count.
Each tuple in R is a transaction record: a Buyer places Count orders
of Item from a Seller at Paytime and these orders are shipped to

Address. In Figure 2, block B1 consists of orange tuples 𝑡1, 𝑡2, 𝑡3, and
𝑡4. BlockB2 consists of blue tuples 𝑡5, 𝑡6, 𝑡7, and 𝑡8. The density ofB1
is calculated as 𝜌 (B1) = 4+3+9+6

(2+2+1+4+3+4)/6 = 8.25 and the density of

B2 is calculated as 𝜌 (B2) = 5+6+4+3
(2+2+1+3+2+3)/6 ≈ 8.31. After normal-

ization using the sigmoid function, we get 𝜌 (B1) = 1

1+𝑒−8.25 ≈ 0.99

and 𝜌 (B2) = 1

1+𝑒−8.31 ≈ 0.99. The spatial coverage ratios of blocks

B1 and B2 are 𝛿Υ (B1) = 𝑆𝑅 (B1)
𝑆𝑅 (R) =

(0.8−0.2)2
1

= 0.36 and 𝛿Υ (B2) =
𝑆𝑅 (B2)
𝑆𝑅 (R) =

(0.7−0.5)×(0.5−0.4)
1

= 0.02, respectively. Then, we have

𝛿−1Υ (B1) = 1 − 𝛿Υ (B1) = 0.64 and 𝛿−1Υ (B2) = 1 − 𝛿Υ (B2) = 0.98.

According to the scoring function (Equation 3), given 𝛼 = 0.5, we

have 𝑓 (B1) = 0.815 and 𝑓 (B2) = 0.985. Although the density val-

ues of blocks B1 and B2 are the same, block B2 is more spatially

compact, i.e., having smaller spatial coverage ratio. Thus, block B2
is ranked higher than block B1.

NP-hardness. Our top-𝑘 SCD-block mining problem is a gener-

alization of the traditional DBM problem. By setting 𝛼 = 1 and

𝑘 = 1, our top-𝑘 SCD-block mining problem reduces to a special

case, i.e., the traditional DBM problem. Since the traditional DBM

problem is an NP-hard problem [2, 17], our problem is also an

NP-hard problem.
1
Therefore, there is currently no polynomial

algorithm for computing exact result of our problem. We develop

the first polynomial-time approximate algorithms for solving the

top-𝑘 SCD-block mining problem.

3.2 Filter-Refinement Framework
State-of-the-art DBM algorithms [28, 29, 32] equally treat all the

dimensions in a spatial tensor and only aim for maximizing the

block density, so that they find blocks with large spatial coverage

ratios. To obtain blocks with small spatial coverage ratios and high

1
Given a spatial tensor containing 𝑛 tuples, the time complexity of brute-force exact

algorithm is𝐶𝑛
1
+𝐶𝑛

2
+ · · · +𝐶𝑛

𝑛 = 𝑂 (2𝑛) .

density values, we adopt a filter-refinement framework that sepa-

rates the processing of the spatial dimensions and the traditional

dimensions. It consists of two phases as follows.

Filtering Phase. It processes the spatial dimensions and generates

candidate SCD-blocks with good scores. The way of generating

candidate SCD-blocks plays an important role in determining the

scores of the result SCD-blocks. We propose two different solutions

for the filtering phase, i.e., a top-down solution in Section 4 and a

bottom-up solution in Section 5.

Refinement Phase. It applies existing DBM algorithms on tradi-

tional dimensions to further maximize the density of the candidate

SCD-blocks. After that, the 𝑘 candidate SCD-blocks are returned as

the final results.

4 Top-Down Solution
4.1 Baseline: Removing Algorithm (RA)
We propose a baseline, the removing algorithm (RA), that extends

state-of-the-art DBM algorithms [28, 29, 32] to process the spatial

dimensions and generate candidate SCD-blocks. Figure 3a shows

the working process of the RA algorithm. Given a spatial tensor

R, it generates candidate SCD-blocks as follows. Initially, let B
be the input spatial tensor R and B′ be a copy of B. Among all

the slices of the spatial dimensions, it selects a slice based on a

slice selection policy and removes it from B′. This step is repeated

until the score of B′ cannot be improved. When the iteration stops,

block B′ is considered as a candidate SCD-block and is passed to

the refinement phase. Next, after candidate B′ is finalized in the

refinement phase, it is removed from B. After resetting B′ to a

copy of the current B, algorithm RA is applied to generate the next

candidate SCD-block from B′. The pseudo code of RA is shown in

Algorithm 1 in Section A in the appendix.

However, algorithm RA is not effective in reducing the spatial

coverage ratio. The reason is as follows. Consider block B′ in the

current iteration. According to Equation 2, the spatial coverage

ratio 𝛿Υ (B′) is calculated based on spatial boundary values Υ𝐿𝑥 (B′),
Υ𝑈𝑥 (B′), Υ𝐿𝑦 (B′), and Υ𝑈𝑦 (B′). Suppose a slice B(𝑎, 𝑖), 𝑖 ∈ {Υ𝑥 , Υ𝑦}
is removed. If the dimension value 𝑎 is not one of the spatial bound-

ary values, the spatial coverage ratio does not decrease. For instance,

considering the orange block in Figure 2, if the slice with value

0.3 of the latitude dimension (Υ𝑦) is removed, the spatial coverage

ratio of the orange block does not change. The spatial coverage

1352

Spatially Compact Dense Block Mining in Spatial Tensors KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Removing
slice(a) Removing Algorithm. Removing

slice

Partitioning
block

Partitioning
block(b) Partitioning Algorithm.

Figure 3: Top-down solution.

ratio can be largely reduced in RA only when slices with spatial

boundary values are consecutively removed. However, this case

seldom happens since, at each step, the slice that mostly improves

the score of the current block is not always at the spatial boundary.

Time complexity. The time complexity of the RA algorithm is

𝑂 (𝑘𝐿𝑑2𝑛 + 𝑘𝐿2) where 𝐿 = max{|B(𝑖) | | 𝑖 ∈ [1, 𝑁]}. Details can
be found in Lemma B.1 in Section B in the appendix.

4.2 Partitioning Algorithm (PA)
As discussed in the previous section, algorithm RA may return

candidate SCD-blocks with large spatial coverage ratios. We pro-

pose the partitioning algorithm (PA) that performs partitioning

operations on blocks, instead of the removing operations in the RA

algorithm. The motivation is that when a block B is divided into

two sub-blocks B1 and B2 at slice B(𝑎, 𝑖), 𝑖 ∈ {Υ𝑥 , Υ𝑦}, the spatial
coverage ratio of either of the sub-blocks will be at most 50% of

that of block B when the dimension value 𝑎 is in the middle of the

range of the spatial dimension Υ𝑥 or Υ𝑦 .
Figure 3b shows the working process of the PA algorithm. Given

a spatial tensor R, it generates candidate SCD-blocks as follows.
Step I: Initially, let block B be the input spatial tensor R.
Step II: Select a slice based on a slice selection policy among

all the spatial slices of block B.
Step III: Partition block B into two sub-blocks B1 and B2 at

the selected slice.

Step IV: Take the sub-block with higher score, i.e., B′ =
max{𝑓 (B1), 𝑓 (B2)} and discard the other sub-block.

Step V: If 𝑓 (B′) > 𝑓 (B), set B = B′ and go to Step II. Other-

wise, it returns B′ as a candidate and terminates.

The pseudo code of PA is shown in Algorithm 2 in Section A in the

appendix.

Lemma 4.1 shows that the top-1 SCD-block discovered by the

PA algorithm achieves the same 1/𝑁 bound approximation guaran-

tee as traditional top-1 dense block found by existing DBM algo-

rithms [28, 29, 32]. The proof is available in Lemma C.1 in Section C

in the appendix.

Lemma 4.1. [1/N-Approximation Guarantee] Given a spatial
tensorB, letB∗ ⊆ B be the block that maximizes the scoring function
𝑓 (·) (Equation 3). Let ˆB be the block returned by the PA algorithm.
If ∀𝑖 ∈ {Υ𝑥 , Υ𝑦}, |B(𝑖) | ≥ 1

𝑁
𝐷B , 𝛿−1Υ (ˆB) ≥

1

𝑁
, in each partition

operation, the sub-block B′ with higher score satisfies that 𝜌 (B′) ≥
𝜌 (B) and each slice B(𝑎, 𝑖) in the discarded sub-block satisfies that
𝑀B(𝑎,𝑖) ≤ 𝑀B

| B (𝑖) | , then we have 𝑓 (ˆB) ≥ 1

𝑁
𝑓 (B∗).

Time complexity. The time complexity of the PA algorithm is

𝑂 (𝑘𝐿𝑑2𝑛 + 𝑘𝐿2) where 𝐿 = max{|B(𝑖) | | 𝑖 ∈ [1, 𝑁]}. Details can
be found in Lemma B.1 in Section B in the appendix.

4.3 Combining RA and PA
Baseline RA finds candidate SCD-blocks by removing slices with

low mass, while the proposed PA algorithm generates candidate

SCD-blocks by partitioning blocks. Intuitively, we can combine the

removing operation and the partitioning operation and derive the

removing-partitioning algorithm (RPA). Given a spatial tensor R, it
generates candidate SCD-blocks as follows. Initially, spatial tensor

R is taken as the block to be processed, denoted by B. Then, it
iteratively performs the removing operation or the partitioning

operation on B until the score of B cannot be improved. Let B
be the current block to be processed. Among all the slices of the

spatial dimensions, a slice is selected based on a policy. It determines

whether performing the removing operation or performing the

partitioning operation according to which operation can result in

higher score. If neither the removing operation nor the partitioning

operation can improve the score of B, it is regarded as a candidate

and is passed to the refinement phase. The pseudo code of RPA is

shown in Algorithm 3 in Section A in the appendix.

Approximation guarantee. Algorithm RPA follows Lemma 4.1

and has 1/𝑁 -approximation guarantee. The proof is available in

Lemma C.2 in Section C in the appendix.

Time complexity. The time complexity of the RPA algorithm is

𝑂 (𝑘𝐿𝑑2𝑛 + 𝑘𝐿2) where 𝐿 = max{|B(𝑖) | | 𝑖 ∈ [1, 𝑁]}. Details can
be found in Lemma B.1 in Section B in the appendix.

4.4 Slice Selection
In this section, we first briefly describe two slice selection polices in

existing algorithms. Then, we propose a new slice selection policy,

named the concave policy.

Maximum cardinality with average mass policy (MCAM-
policy). It first selects the dimension with the largest cardinality

in the current block, i.e., argmax𝐴𝑖
|B(𝑖) |, 𝑖 ∈ [1, 𝑁]. Next, it com-

putes the average mass of the slices of the selected dimension, i.e.,

𝑀𝑖 = 𝑀B/|B(𝑖) |. Then, the slices whose mass are below the av-

erage mass are selected, i.e., {B(𝑎, 𝑖) | 𝑎 ∈ B(𝑖) ∧𝑀B(𝑎,𝑖) < 𝑀𝑖 }.
This policy may select multiple slices and is used in D-Cube [29].

Minimum mass policy (MM-policy). It considers all slices of
all dimensions. The slice with the minimum mass is selected, i.e.,

argminB(𝑎,𝑖) 𝑀B(𝑎,𝑖) , 𝑖 ∈ [1, 𝑁], 𝑎 ∈ B(𝑖). This policy is used in

M-Zoom [27], M-Biz [27], DenseStream [29], and DenseAlert [29].

Concave policy (C-policy). Although the MCAM-policy and the

MM-policy have beenwidely adopted in the literature [27, 29], there

are several issues for using these two policies. First, the MCAM-

policy selects multiple slices at a time (e.g., the 24 purple slices in

Figure 4a) which is not suitable for the partition operation. Because

it may generate a lot of small-sized blocks. Second, the MM-policy

chooses the slice with the minimum mass. However, this slice can

be possibly close to the boundary value (e.g., the purple slice with

dimension value Υ𝑥 = 35 in Figure 4b), so that the spatial coverage

ratio cannot be reduced. In order to overcome these two issues, we

propose the following concave policy.

1353

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Weike Tang, Dingming Wu, Tsz Nam Chan, and Kezhong Lu

301 5 10 15 20 25

M
as
s

35

60

130
150

301 5 10 15 20 25

M
as
s

35
20

301 5 10 15 20 25

M
as
s

35
10

(a) MCAM-policy (b) MM-policy (c) C-policy

Figure 4: Slice selection.

Given block B, considering two slices B(𝑎1, 𝑖) and B(𝑎2, 𝑖), if
𝑎1 < 𝑎2, slice B(𝑎1, 𝑖) is called on the left side of B(𝑎2, 𝑖) and
slice B(𝑎2, 𝑖) is called on the right side of B(𝑎1, 𝑖). Given block

B, considering slice B(𝑎, 𝑖), let 𝑀𝐿
max (𝑎, 𝑖) = max𝑎′<𝑎 𝑀B(𝑎′,𝑖) be

the maximum mass of the slices on the left side of B(𝑎, 𝑖) and
𝑀𝑅
max (𝑎, 𝑖) = max𝑎′>𝑎 𝑀B(𝑎′,𝑖) be the maximum mass of the slices

on the right side of B(𝑎, 𝑖). The concave depth of slice B(𝑎, 𝑖) is
defined as

dep(𝑎, 𝑖) = min{𝑀𝐿
max (𝑎, 𝑖), 𝑀𝑅

max (𝑎, 𝑖)} −𝑀B(𝑎,𝑖) . (4)

Among all slices of all dimensions, the proposed concave policy

selects the slice with the maximum concave depth. Figure 4c shows

the masses of 36 slices of the longitude dimension Υ𝑥 in an exam-

ple block. Considering slice B(10, Υ𝑥), we have 𝑀B(10,Υ𝑥) = 20,

𝑀𝐿
max (10, Υ𝑥) = 𝑀B(7,Υ𝑥) = 130, 𝑀𝑅

max (10, Υ𝑥) = 𝑀B(25,Υ𝑥) = 150,

and dep(𝑎, 𝑖) = 130 − 20 = 110. Comparing with all the other slices,

the concave depth of slice B(10, Υ𝑥) is the largest, so that it will be

selected.

5 Bottom-Up Solution
The top-down solution starts from the entire spatial tensor and

mines top-𝑘 SCD-blocks by partitioning blocks or removing slices

with low density values. This section proposes a bottom-up solution,

i.e., the expansion algorithm (EA), which finds candidate SCD-

blocks in a different way. It first divides the spatial tensor into small

cells. Then, potential small cells are combined to form candidate

SCD-blocks with good scores.

5.1 Cell Construction
The bottom-up solution considers the tuples of a spatial tensor R in

a two dimensional spatial space with axes Υ𝑥 and Υ𝑦 , denoted by R
2
.

The ranges of axes Υ𝑥 and Υ𝑦 are defined as [Υ𝐿𝑥 (R), Υ𝑈𝑥 (R)] and
[Υ𝐿𝑦 (R), Υ𝑈𝑦 (R)], respectively. Each axis is split into ℎ consecutive

intervals, so that space R2 is divided into ℎ × ℎ cells. Each cell 𝑐 is

represented by a pair (𝑐.𝑥, 𝑐 .𝑦) that indicates the positions of 𝑐 at
the two axes. A tuple 𝑡 belongs to a cell 𝑐 if the spatial dimensions

of 𝑡 fall within the cell, denoted by 𝑡 ∈ 𝑐 . Figure 5a illustrates

the 7 × 7 cells in the space R2 of a spatial tensor. The bottom-up

solution considers the cells containing tuples and ignores empty

cells. A cell 𝑐 = (𝑐.𝑥, 𝑐 .𝑦) has the following four neighbors in space

R2: (𝑐.𝑥 + 1, 𝑐 .𝑦), (𝑐.𝑥 − 1, 𝑐 .𝑦), (𝑐.𝑥, 𝑐 .𝑦 + 1), and (𝑐.𝑥, 𝑐 .𝑦 − 1). For
example, considering the orange cell 𝑐 = (2, 3) shown in Figure 5a,

its four neighbors (shown as grey cells) are (3, 3), (1, 3), (2, 4), and
(2, 2). The mass of a cell is calculated as𝑀𝑐 =

∑
𝑡 ∈𝑐 𝑡 [𝑋].

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1 2 3 4 5 6 7
1
2
3
4
5
6
7

(e)

(b) (c)

(d) (f)

(a)

Figure 5: Expansion algorithm.

5.2 Expansion Algorithm (EA)
The proposed EA algorithm processes the cells in space R2 in de-

scending order of their mass. It starts with the cell having the largest

mass and tries to generate a candidate SCD-block by combining it

with its nearby cells. In other words, starting from a cell, a candidate

SCD-block is formed by several times of expansions. Specifically,

let B be the current block that is composed of a set of cells. Initially,

B only contains the starting cell. For each cell 𝑐 ∈ B, considering
each neighbor 𝑛𝑐 of cell 𝑐 , if the score of block B is improved by

adding 𝑛𝑐 , the current block B is expanded by combining B and 𝑛𝑐 .

The expansion of block B stops when no neighbor can improve the

score of B. After that, block B is passed to the refinement phase.

The cells included in B are removed from the spatial space. Next,

algorithm EA selects the cell having the largest mass in the rest

of the cells and generates the next candidate SCD-block using the

same process above.

Figure 5 illustrates the process of the EA algorithm. Suppose

that one block expansion starts from the orange cell shown in

Figure 5a. The four neighbors of the orange cell are shown as grey

cells. In Figure 5b, three neighbors are combined with the current

block, shown as the orange part, while the red neighbor does not

improve the score, so that it is discarded. Next, no neighbor can

further improve the score, so that the current block expansion stops.

The green block B1 shown in Figure 5c is taken as a candidate

SCD-block and passed to the refinement phase. After that, suppose

that another block expansion starts from the orange cell shown

in Figure 5c. Since the four neighbors (shown as the grey cells in

Figure 5c) improve the score, they are combined with the current

block, shown as the orange part in Figure 5d. Next, the neighbor

cells of the current block are considered (the grey cells in Figure 5d).

As shown in Figure 5e, three neighbors are combined with the

1354

Spatially Compact Dense Block Mining in Spatial Tensors KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 1: Statistics of datasets.

Dataset Schema Volume #Tuples

Gowalla_NA user, place, check-in-time, address (longitude, latitude) 56K × 691K × 596 × 231 × 201 6,442,890

Brightkite_Euro user, place, check-in-time, address (longitude, latitude) 5K × 14K × 203 × 239 × 151 51,352

Foursquare user, place, check-in-time, address (longitude, latitude) 266K × 3.68M × 455 × 1000 × 1000 33,263,632

EOrder buyer, seller, item, pay-time, address (longitude, latitude) 71.11M × 55K × 2.30M × 122 × 1000 × 1000 115,631,169

current block and five neighbors are discarded. Then, the score of

the current block cannot be further improved, so that the green

block B2 shown in Figure 5f is taken as a candidate SCD-block and

passed to the refinement phase. The pseudo code of EA is shown

in Algorithm 4 in Section A in the appendix.

Time complexity. The time complexity of the EA algorithm is

𝑂 (ℎ2 logℎ2 + ℎ2𝑛 + 𝐿𝑑2𝑛) where 𝐿 = max{|B(𝑖) | | 𝑖 ∈ [1, 𝑁]}.
Details can be found in Lemma B.2 in Section B in the appendix.

6 Experiments
Datasets. In our experiments, four real datasets are used to eval-

uate the performance of the proposed algorithms. Gowalla_NA,

Brightkite_Euro, and Foursquare [31] are check-in datasets from

location-based social networking websites. Gowalla_NA is a subset

of the Gowalla dataset [8]. It contains the check-in records located

in North America. Brightkite_Euro is a subset of the Brightkite

dataset [8]. It contains the check-in records located in Europe.

EOrder contains orders from an E-commercewebsite. In each dataset,

we discretize the ranges of the longitude and the latitude dimensions

into slots. The unit of the spatial space of each dataset is defined

as 1 longitude slot × 1 latitude slot. Table 1 shows the statistics of

these datasets.

Evaluated algorithms. We compare the proposed algorithms PA,

RPA, and EA with the baseline algorithm RA and four existing DBM

algorithms: D-Cube [29], M-Zoom [28], M-Biz [28], and AugSplic-

ing [32]. By default, algorithms RA, PA, and RPA adopt the C-

policy for slice selection. Algorithm M-Biz is used in the refinement

phase. The source code of the proposed algorithms is available at

https://anonymous.4open.science/r/SP_Block-C0BB.

Settings. All the algorithms are running on a machine with 4 Intel

Xeon E7-4830 CPUs (56 cores, 2.0 GHz) and 2TB main memory.

By default, parameter 𝛼 in Equation 3 and parameter ℎ in the EA

algorithm are set to 0.5 and 50, respectively.

Metrics. To evaluate the SCD-blocks returned by different algo-

rithms, we report the density values, the spatial coverage ratios,

and the numbers of tuples contained.

Spatial compactness visualization. Figure 6 plots the spatial

locations of the tuples in the top-3 blocks returned by different al-

gorithms on dataset Brightkite_Euro. Considering the top-3 blocks

found by the four existing algorithms D-Cube, M-Zoom, M-Biz,

and AugSplicing and the baseline algorithm RA, they are spatially

loose and overlap each other, almost covering the whole spatial

region of the dataset. Regarding the top-3 blocks discovered by

our algorithms PA, RPA, and EA, they are spatially compact and

well separated. Specifically, algorithms PA and RPA find country-

level SCD-blocks, i.e., two SCD-blocks in the region of UK and

one SCD-block in the region of Germany. Algorithm EA discovers

city-level SCD-blocks, i.e, SCD-blocks in London, Stockholm, and

Boden. These SCD-blocks cannot be discovered by existing DBM

algorithms. Algorithms PA and RPA produce similar SCD-blocks.

It is because that in the RPA algorithm, the partitioning operation

improves the scores more than the removing operation does in most

cases, so that the number of performed partitioning operations is

more than the number of performed removing operations. In other

words, the proposed partitioning operation is effective in mining

SCD-blocks. The SCD-blocks found by the EA algorithm are smaller

than that of the PA and the RPA algorithms. The reason is that the

EA algorithm stops expansions of blocks when encountering cells

with low mass. More visualization results on the other datasets are

included in the appendix. They are consistent with the observations

described above.

Assessment of the top-𝑘 SCD-blocks. The four figures in the

first row of Figure 7 compares all algorithms in terms of density 𝜌

and spatial coverage ratio 𝛿Υ on the four datasets. The four figures

in the second row of Figure 7 show the numbers of tuples contained

in the top-5 blocks returned by different algorithms on the four

datasets. In most cases, the proposed algorithms PA, RPA, and EA

find significantly spatially compact blocks than RA, D-Cube, M-

Zoom, M-Biz, and AugSplicing. On dataset Foursquare, AugSplicing

returns only two blocks, because AugSplicing combines temporally

adjacent sub-blocks. When these sub-blocks happen to contain

spatially close tuples, AugSplicing may find spatially compact dense

blocks. The density values of the blocks found by our algorithms

PA, RPA, and EA are comparable with that of algorithms D-Cube,

M-Zoom, M-Biz, and RA, in most cases. On dataset EOrder, the

density values of the blocks found by our algorithms are lower

than that of existing algorithms. The reason is that EOrder is sparse

compared with the other datasets, so that the density values of the

blocks found by existing algorithms are contributed by the tuples

spatially scattered. In terms of the size of the block, i.e., the number

of tuples contained, algorithms D-Cube, M-Zoom, M-Biz, and RA

return large blocks, whereas, algorithms AugSplicing, PA, RPA,

and EA find either moderate or small blocks. In community and

marketing applications, moderate and small blocks are preferred

than large blocks for fine-grained analysis.

According to the reported results, we summarize the characteris-

tics of different algorithms as follows. Existing algorithms D-Cube,

M-Zoom, M-Biz, and AugSplicing treat spatial dimensions the same

as traditional dimensions and find blocks with high density values

by removing slices with low mass. Thus, they return large-sized

blocks, so that their spatial coverage ratios are high. Although base-

line RA processes spatial dimensions in the first phase and then

refines traditional dimensions in the second phase, the removing

operation cannot reduce the spatial coverage ratio. Hence, RA can-

not find SCD-blocks. The partition operations in PA and RPA are

effective in reducing the spatial coverage ratio and the proposed

C-policy is able to discover dense blocks. Thus, our algorithms PA

1355

https://anonymous.4open.science/r/SP_Block-C0BB

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Weike Tang, Dingming Wu, Tsz Nam Chan, and Kezhong Lu

0 75 150
0

100

200

(a) D-Cube

0 75 150
0

100

200

(b) M-Zoom

0 75 150
0

100

200

(c) M-Biz

0 75 150
0

100

200

(d) AugSplicing

0 75 150
0

100

200

(e) RA

0 75 150
0

100

200

(f) PA

0 75 150
0

100

200

(g) RPA

0 75 150
0

100

200

(h) EA

Figure 6: Spatial locations of the tuples in the top-3 blocks found by different algorithms on Brightkite_Euro.

0.2 0.6 1

0.2

0.6

1

#T
up

le
s

1

0.5

0

(a) Gowalla_NA

0.2 0.6 1

0.2

0.6

1

0

0.6

1.2

#T
up

le
s

(b) Brightkite_EA

0.2 0.6 1

0.2

0.6

1

0

4

8

#T
up

le
s

(c) Foursquare

0.2 0.6 1

0.2

0.6

1

0

0.8

1.6

#T
up

le
s

(d) EOrder

Figure 7: Assessment of the top-5 blocks found by different algorithms.

and RPA produce SCD-blocks. Our EA algorithm discovers fine-

grained SCD-blocks. The reason is that EA starts from a small cell

and expands it by combining neighboring small cells. The current

block stops being expanded when encountering low-density small

cells. Unless there exist many consecutive high-density small cells

in the dataset, EA may find moderate-sized blocks.

Effect of slice selection policy. To show the effectiveness of the

proposed C-policy, we adopt the MM-policy and the C-policy in

algorithms RA, PA, and RPA. In addition, since the MCAM policy

selects multiple slices, we only adopt it in the RA algorithm. Fig-

ure 8 shows the density values 𝜌 and the spatial coverage ratios 𝛿Υ
of the top-5 blocks returned by algorithms RA, PA, and RPA using

different slice selection policies on dataset Foursquare. Regarding

algorithm RA, the spatial coverage ratios of the blocks using dif-

ferent policies all exceed 50% that is worse than algorithms PA

and RPA. In algorithms PA and RPA, the C-policy outperforms the

MM-policy in terms of the spatial coverage ratios and is comparable

to the MM-policy according the density values. Considering algo-

rithm PA, although the MM-policy returns one block whose density

value is higher than that of the C-policy, its spatial coverage ratio is

larger than that of the C-policy. Thus, the proposed C-policy helps

algorithms PA and RPA finding SCD-blocks.

Varying ℎ in the EA algorithm. By default, ℎ is set to 50, meaning

that in algorithm EA, the two dimensional Υ𝑥Υ𝑦 space of the dataset

1356

Spatially Compact Dense Block Mining in Spatial Tensors KDD ’25, August 3–7, 2025, Toronto, ON, Canada

0

0.5

1

0 0.5 1

Figure 8: Slice selection.

0

0.5

1

0 0.005 0.010

Figure 9: Varying ℎ.

50

150

250

0.0 0.5 1.0

Figure 10: Effect of refinement phase.

is divided into 50 × 50 cells. To evaluate the effect of parameter

ℎ, we also try another four values, i.e., ℎ = 10, ℎ = 20, ℎ = 100,

and ℎ = 150. Figure 9 shows the density values and the spatial

coverage ratios of the top-5 blocks returned by the EA algorithm

when varyingℎ on dataset Foursquare. Whenℎ increases from 50 to

150, the spatial coverage ratios of the blocks do not change, while

the density values of the blocks decrease slightly. Using large ℎ

tends to find small blocks. This is because small cells contain few

tuples, so that the chance of increasing the density value of the

current block by combining neighbor cell is low. When ℎ decreases

from 50 to 10, the spatial coverage ratios of the blocks become large

and the density values of the blocks increase a bit. Using small ℎ

tends to find large blocks. The reason is that large cells include

more tuples, so that it is probably that more neighbor cubes will be

combined. Hence, we can tune ℎ to get blocks with good density

values and small spatial coverage ratios.

Effect of refinement phase.We compare the densities and spatial

coverage ratios of the SCD-blocks before and after refinement.

Figure 10 show the results on dataset Gowalla_NA. We observe

that the spatial coverage ratios of the SCD-blocks do not change

much while the densities increase a lot after the refinement phase.

Varying parameter 𝛼 in the scoring function. By default, pa-

rameter 𝛼 is set to 1/2, indicating that the density value and the

spatial coverage ratio are considered equally in the scoring func-

tion. To evaluate the effect of different weighing schemes, we also

apply another two parameter settings, i.e., 𝛼 = 1/5 and 𝛼 = 4/5
in algorithms RA, PA, RPA, and EA. Figure 11 shows the density

values and the spatial coverage ratios of the top-5 blocks returned

by algorithms RA, PA, RPA, and EA when varying the weighing

scheme in the scoring function on dataset Foursquare.

Algorithms RA and EA do not affected by the weighing scheme.

This is because algorithm RA only removes a few slices in the

filtering phase, so that the weights in the scoring function does

not change the blocks much in the result. Algorithm EA divides

the spatial space into 50 × 50 cells. The neighboring cells that can

be combined do not vary much with the weights. The weighing

scheme has similar effect on PA and RPA. When 𝛼 = 1/5, i.e., more

attention is given to the spatial coverage ratio, as expected, the

returned blocks have better spatial ratios. When 𝛼 = 4/5, i.e., more

attention is given to the density values, the returned blocks have

worse spatial ratios as expected and the density values increase.

7 Conclusion
We formulate the new problem of mining top-𝑘 SCD-blocks in spa-

tial tensors, which aims to discover dense blocks with small spatial

0.70 0.85 1.00

200

400

600

(a) RA

0.00 0.15 0.30
300

500

700

(b) PA

0.00 0.15 0.30
300

500

700

(c) RPA

0.0000 0.0001 0.0002
350

500

650

(d) EA

Figure 11: Varying parameter 𝛼 in the scoring function.

coverage ratio. Since it is an NP-hard problem, we approximately

solve this problem using a filter-refinement framework by incor-

porating the newly developed top-down solution and bottom-up

solution. The top-down solution proposes a partition operationwith

a slice selection policy that generates candidate SCD-blocks with

high density values and low spatial coverage ratios. The bottom-up

solution divides the spatial tensor into small cells in the spatial

space and generate good candidates by combining nearby cells.

We verify the effectiveness of the proposed solutions on four real

datasets.

In the future, we plan to further investigate how different types

of scoring functions can affect the effectiveness of this DBM task

and explore blocks that are compact in both temporal dimension

and spatial dimensions.

Acknowledgments
This work is supported in part by the National Natural Science

Foundation of China under Grants 62372308 and 62202401 and the

GuangDong Basic and Applied Basic Research Foundation under

Grant 2023A1515011619.

1357

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Weike Tang, Dingming Wu, Tsz Nam Chan, and Kezhong Lu

References
[1] Ralph Abraham, Jerrold E Marsden, and Tudor Ratiu. 2012. Manifolds, tensor

analysis, and applications. Vol. 75. Springer Science & Business Media.

[2] Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. 2002. Complexity of finding

dense subgraphs. Discret. Appl. Math. 121, 1-3 (2002), 15–26.
[3] Yikun Ban, Xin Liu, Ling Huang, Yitao Duan, Xue Liu, and Wei Xu. 2019. No

Place to Hide: Catching Fraudulent Entities in Tensors. InWWW. 83–93.

[4] Michael Batty. 2013. The New Science of Cities. MIT Press.

[5] Siddharth Bhatia, Arjit Jain, Pan Li, Ritesh Kumar, and BryanHooi. 2021. MStream:

Fast Anomaly Detection in Multi-Aspect Streams. InWWW. 3371–3382.

[6] Louis Brand. 2020. Vector and tensor analysis. Courier Dover Publications.
[7] Nicholas H. Chan and Steven C. Chan. 2011. Financial Econometrics: Models and

Methods. Wiley.

[8] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility:

user movement in location-based social networks. In KDD. 1082–1090.
[9] Quang-Huy Duong, Heri Ramampiaro, and Kjetil Nørvåg. 2020. Multiple Dense

Subtensor Estimation with High Density Guarantee. In ICDE. 637–648.
[10] Quang-Huy Duong, Heri Ramampiaro, Kjetil Nørvåg, and Thu-Lan Dam. 2021.

Density Guarantee on Finding Multiple Subgraphs and Subtensors. ACM Trans.
Knowl. Discov. Data 15, 5 (2021), 76:1–76:32.

[11] Wenjie Feng, Shenghua Liu, and Xueqi Cheng. 2019. CatchCore: Catching Hier-

archical Dense Subtensor. In PKDD. 156–172.
[12] Wenjie Feng, Shenghua Liu, and Xueqi Cheng. 2023. Hierarchical Dense Pattern

Detection in Tensors. ACM Trans. Knowl. Discov. Data 17, 6 (2023), 81:1–81:29.
[13] Ekta Gujral, Ravdeep Pasricha, and Evangelos E. Papalexakis. 2018. SamBaTen:

Sampling-based Batch Incremental Tensor Decomposition. SIAM, 387–395.

[14] Jun-Gi Jang and U Kang. 2023. Static and Streaming Tucker Decomposition for

Dense Tensors. ACM Trans. Knowl. Discov. Data 17, 5 (2023), 66:1–66:34.
[15] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos

Faloutsos. 2015. A General Suspiciousness Metric for Dense Blocks in Multimodal

Data. In ICDM. 781–786.

[16] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos

Faloutsos. 2016. Spotting suspicious behaviors in multimodal data: A general

metric and algorithms. IEEE Transactions on Knowledge and Data Engineering 28,

8 (2016), 2187–2200.

[17] Samir Khuller and Barna Saha. 2009. On Finding Dense Subgraphs. In ICALP,
Vol. 5555. 597–608.

[18] Tamara GKolda and BrettWBader. 2009. Tensor decompositions and applications.

SIAM review 51, 3 (2009), 455–500.

[19] X. Li and L. Wang. 2007. A review of spatial data compression techniques.

International Journal of Remote Sensing 28, 16 (2007), 3675–3700.

[20] Geert Litjens, Thijs Kooi, Behzad Etemadi Bejnordi, et al. 2017. A survey on deep

learning in medical image analysis. Medical Image Analysis 42 (2017), 60–88.
[21] Paul A. Longley, Michael F. Goodchild, David J. Maguire, and David W. Rhind.

2015. Geographic Information Systems and Science (4th ed.). Wiley.

[22] C. R. Margules and R. L. Pressey. 2000. Systematic conservation planning. Nature
405, 6783 (2000), 243–253.

[23] Koji Maruhashi, Fan Guo, and Christos Faloutsos. 2011. MultiAspectForensics:

Pattern Mining on Large-Scale Heterogeneous Networks with Tensor Analysis.

In ASONAM. 203–210.

[24] John A. Richards. 2013. Remote Sensing Digital Image Analysis (5th ed.). Springer.

[25] Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang.

2010. Dense subgraphs with restrictions and applications to gene annotation

graphs. In RECOMB. 456–472.
[26] Lei Shi, Aryya Gangopadhyay, and Vandana P. Janeja. 2015. STenSr: Spatio-

temporal tensor streams for anomaly detection and pattern discovery. Knowl.
Inf. Syst. 43, 2 (2015), 333–353.

[27] Kijung Shin, Bryan Hooi, and Christos Faloutsos. 2016. M-Zoom: Fast Dense-

Block Detection in Tensors with Quality Guarantees. In ECML/PKDD, Vol. 9851.
264–280.

[28] Kijung Shin, Bryan Hooi, and Christos Faloutsos. 2018. Fast, Accurate, and

Flexible Algorithms for Dense Subtensor Mining. ACM Trans. Knowl. Discov.
Data 12, 3 (2018), 28:1–28:30.

[29] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017. D-Cube: Dense-

Block Detection in Terabyte-Scale Tensors. InWSDM. 681–689.

[30] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017. DenseAlert:

Incremental Dense-Subtensor Detection in Tensor Streams. In SIGKDD. 1057–
1066.

[31] Dingqi Yang, Daqing Zhang, and Bingqing Qu. 2016. Participatory Cultural

Mapping Based on Collective Behavior Data in Location-Based Social Networks.

ACM Trans. Intell. Syst. Technol. 7, 3 (2016), 30:1–30:23.
[32] Jiabao Zhang, Shenghua Liu, Wenting Hou, Siddharth Bhatia, Huawei Shen, Wen-

jian Yu, and Xueqi Cheng. 2021. AugSplicing: Synchronized Behavior Detection

in Streaming Tensors. In AAAI. 4653–4661.
[33] Shuo Zhou, Nguyen Xuan Vinh, James Bailey, Yunzhe Jia, and Ian Davidson. 2016.

Accelerating Online CP Decompositions for Higher Order Tensors. In SIGKDD.
1375–1384.

A Pseudo Code
Algorithm 1 shows the pseudo code of the RA algorithm in Sec-

tion 4.1. Algorithm 2 shows the pseudo code of the PA algorithm

in Section 4.2. Algorithm 3 shows the pseudo code of the RPA algo-

rithm in Section 4.3. Algorithm 4 shows the pseudo code of the EA

algorithm in Section 5.2.

Algorithm 1: Removing Algorithm (RA)

Input : spatial tensor R, the number 𝑘 of required

SCD-blocks.

Output : the list B of 𝑘 candidate SCD-blocks.

1 B← ∅;
2 for 𝑖 ← 1 · · ·𝑘 do
3 B ← R;
4 while true do
5 B(𝑎, 𝑖) ← sliceSelection(Υ𝑥 , Υ𝑦)

B′ ← remove(B, 𝑎, 𝑖);
6 if 𝑓 (B′) > 𝑓 (B) then
7 B ← B′;
8 go to line 4;

9 break;

10 B ← refine(B);
11 R ← R − B;
12 Add B to B;

13 return B;

Algorithm 2: Partitioning Algorithm (PA)

Input : spatial tensor R, the number 𝑘 of required

SCD-blocks.

Output : the list B of 𝑘 candidate SCD-blocks.

1 B← ∅;
2 for 𝑖 ← 1 · · ·𝑘 do
3 B ← R;
4 while true do
5 B(𝑎, 𝑖) ← sliceSelection(Υ𝑥 , Υ𝑦)

B1,B2 ← partition(B, 𝑎, 𝑖);
6 if 𝑚𝑎𝑥 (𝑓 (B1), 𝑓 (B2)) > 𝑓 (B) then
7 if 𝑓 (B1) > 𝑓 (B2) then
8 B ← B1;
9 else if 𝑓 (B1) ≤ 𝑓 (B2) then
10 B ← B2;
11 go to line 4;

12 break;

13 B ← refine(B);
14 R ← R − B;
15 Add B to B;

16 return B;

1358

Spatially Compact Dense Block Mining in Spatial Tensors KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Algorithm 3: Removing-Partitioning Algorithm (RPA)

Input : spatial tensor R, the number 𝑘 of required

SCD-blocks.

Output : the list B of 𝑘 candidate SCD-blocks.

1 B← ∅;
2 for 𝑖 ← 1 · · ·𝑘 do
3 B ← R;
4 while true do
5 B(𝑎, 𝑖) ← sliceSelection(Υ𝑥 , Υ𝑦)

B1,B2 ← partition(B, 𝑎, 𝑖);
6 B′ ← remove(B, 𝑎, 𝑖);
7 if 𝑚𝑎𝑥 (𝑓 (B1), 𝑓 (B2)) > 𝑓 (B′) then
8 if 𝑓 (B1) > 𝑓 (B2) then
9 B ← B1;

10 else if 𝑓 (B1) ≤ 𝑓 (B2) then
11 B ← B2;
12 go to line 4;

13 else if 𝑚𝑎𝑥 (𝑓 (B1), 𝑓 (B2)) ≤ 𝑓 (B′) then
14 B ← B′;
15 go to line 4;

16 break;

17 B ← refine(B);
18 R ← R − B;
19 Add B to B;

20 return B;

B Time Complexity
We provide the worst-case time complexity of algorithms PA, RA,

and RPA in Lemma B.1 and the worst-case time complexity of

algorithm EA in Lemma B.2. As a remark, although PA, RA, and

RPA have the same worst-case time complexity, in practice, PA

and RPA are considerable faster than RA because the partitioning

operation reduces the size of the blocks under processing.

Lemma B.1. The worst-case time complexity of algorithms PA, RA,
and RPA are both 𝑂 (𝑘𝐿𝑑2𝑛 + 𝑘𝐿2), where 𝐿 = max{|B(𝑖) | | 𝑖 ∈
[1, 𝑁]}, 𝑛 is the number of tuples in R, and 𝑘 is the number of SCD-
blocks required.

Proof. In the filtering phase, the RPA algorithm executes the

removing and the partitoning operations, while the PA algorithm

only executes the partitioning operation, and the RA algorithm only

executes the removing operation. In the worst case, the partition

operation is equivalent to the removing operation, i.e., dividing the

block into a sub-block and a slice. Thus, the time complexity of the

partition operation is the same as that of the removing operation,

i.e., 𝑂 (𝑛) time. A slice B(𝑎, 𝑖) of dimension 𝑖 cannot be removed

when 𝑎 is the only one value left. Let 𝐿 be the maximum value of the

numbers of distinct values of all dimensions. Then, the removing

operation is executed at most 2𝐿 − 2 times. For each removing

operation, the cost of selecting a slice is 𝑂 (𝐿). Hence, the time

complexity of the filtering phase is 𝑂 (𝑘 (2𝐿 − 2) (𝑛 + 𝐿)). In the

refinement phase, existing DBM algorithms are used that takes

Algorithm 4: Expansion Algorithm (EA)

Input : spatial tensor R, the number 𝑘 of required

SCD-blocks.

Output : the list B of 𝑘 candidate SCD-blocks.

1 𝐺 ← partition R into ℎ × ℎ cells along the

latitude-longitude dimensions;

2 B← ∅;
3 Sort the small blocks in 𝐺 in descending order of mass;

4 for each small block B ∈ 𝐺 do
5 if B has been processed then
6 continue;

7 while true do
8 N ← getNeighbors(B);
9 B′ ← B;

10 for each neighbor 𝑏 ∈ N do
11 if 𝑓 (B + 𝑏) > 𝑓 (B) then
12 B ← B + 𝑏;

13 if 𝑓 (B) = 𝑓 (B′) then
14 break;

15 Add B to B;

16 for each block B ∈ B do
17 refine(B);
18 return B;

𝑂 (𝑘𝐿𝑑2𝑛) time [29]. Therefore, the worst-case time complexity of

algorithms PA, RA, and RPA are both𝑂 (𝑘 (2𝐿−2) (𝑛+𝐿)+𝑘𝐿𝑑2𝑛)) =
𝑂 (𝑘𝐿2 + 𝑘𝐿𝑛 + 𝑘𝐿𝑑2𝑛) = 𝑂 (𝑘𝐿𝑑2𝑛 + 𝑘𝐿2). □

Lemma B.2. The worst-case time complexity of the EA algorithm
is 𝑂 (ℎ2 logℎ2 + ℎ2𝑛 + 𝐿𝑑2𝑛) where 𝐿 = max{|B(𝑖) | | 𝑖 ∈ [1, 𝑁]},
𝑛 is the number of tuples in R, and 𝑘 is the number of SCD-blocks
required.

Proof. In the EA algorithm, there are ℎ2 cells. Calculating the

masses of all cells takes𝑂 (𝑛) time and sorting cells takes𝑂 (ℎ2 logℎ2)
time. Then, the EA algorithm tries to expand each cell by checking

it neighbors. Thus, the number of iterations is at most ℎ2. It ex-

pands at most 𝑛 tuples. Hence, the time complexity of the expansion

is 𝑂 (ℎ2𝑛). The refinement phase uses an existing DBM algorithm

whose time complexity is𝑂 (𝑘𝐿𝑑2𝑛) [29]. Then, the worst-case time

complexity of the EA algorithm is 𝑂 (ℎ2 logℎ2 + ℎ2𝑛 + 𝑘𝐿𝑑2𝑛). □

C Approximation guarantee
Lemma C.1. Given a spatial tensor B, let B∗ ⊆ B be the block

that maximizes the scoring function 𝑓 (·) (Equation 3). Let ˆB be the
block returned by the PA algorithm. If ∀𝑖 ∈ {Υ𝑥 , Υ𝑦}, |B(𝑖) | ≥ 1

𝑁
𝐷B ,

𝛿−1Υ (ˆB) ≥
1

𝑁
, in each partition operation, the sub-block with higher

score (e.g., B1 in Step IV) satisfies that 𝜌 (B1) ≥ 𝜌 (B), and all slices
in the discarded sub-block (e.g., B2 in Step IV) B(𝑎, 𝑖) satisfies that
𝑀B(𝑎,𝑖) ≤ 𝑀B

| B (𝑖) | , then we have 𝑓 (ˆB) ≥ 1

𝑁
𝑓 (B∗).

Proof. Since B∗ maximizes 𝑓 (B), removing slice B∗ (𝑎, 𝑖) from
B∗ will decrease its score, i.e., 𝑓 (B∗ − B∗ (𝑎, 𝑖)) ≤ 𝑓 (B∗). Then,

1359

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Weike Tang, Dingming Wu, Tsz Nam Chan, and Kezhong Lu

according to Equation 3, we have

𝜌 (B∗ − B∗ (𝑎, 𝑖)) + 𝛿−1Υ (B
∗ − B∗ (𝑎, 𝑖)) ≤ 𝜌 (B∗) + 𝛿−1Υ (B

∗)
Obviously, removing a slice does not increase the spatial coverage

ratios, i.e., 𝛿−1Υ (B
∗−B∗ (𝑎, 𝑖)) ≥ 𝛿−1Υ (B

∗). Then, we can derive that

𝜌 (B∗ − B∗ (𝑎, 𝑖)) ≤ 𝜌 (B∗). By substituting Equation 1 in, we have

that

𝑀B∗−𝑀B∗ (𝑎,𝑖)
(𝐷B∗−1)/𝑁 ≤ 𝑀B∗

𝐷B∗/𝑁 and derive that

𝑀B∗ (𝑎,𝑖) ≥ 𝜌 (B∗)/𝑁 . (5)

In each partition operation, we have

𝜌 (ˆB) ≥ 𝜌 (B1) ≥ 𝜌 (B). (6)

Since |B(𝑖) | ≥ 1

𝑁
𝐷B , we can derive that

𝜌 (B) = 𝑀B
𝐷B/𝑁

≥ 𝑀B
|B(𝑖) | . (7)

For all the slices in the discarded sub-block B(𝑎, 𝑖), we have

𝑀B(𝑎,𝑖) ≤
𝑀B
|B(𝑖) | . (8)

Since B∗ ⊆ B, we have that
𝑀B(𝑎,𝑖) ≥ 𝑀B∗ (𝑎,𝑖) . (9)

Combining Equations 5–9, we can derive that

𝜌 (ˆB) ≥ 1

𝑁
𝜌 (B∗) . (10)

Since 𝛿−1Υ (ˆB) ≥
1

𝑁
, and 0 ≤ 𝛿−1Υ (B

∗) ≤ 1, it can be inferred that

𝛿−1Υ (ˆB) ≥
1

𝑁
𝛿−1Υ (B

∗). (11)

Combining Equations 10 and 11, we have 𝑓 (ˆB) ≥ 1

𝑁
𝑓 (B∗). □

Lemma C.2. Given a spatial tensor B, let B∗ ⊆ B be the block
that maximizes the scoring function 𝑓 (·) (Equation 3). Let ˆB be the
block returned by the RPA algorithm. If ∀𝑖 ∈ {Υ𝑥 , Υ𝑦}, |B(𝑖) | ≥
1

𝑁
𝐷B , 𝛿−1Υ (ˆB) ≥

1

𝑁
, in each partition operation, the sub-block with

higher score (e.g., B1 in Step IV) satisfies that 𝜌 (B1) ≥ 𝜌 (B), and all
slices in the discarded sub-block (e.g., B2 in Step IV) B(𝑎, 𝑖) satisfies
that 𝑀B(𝑎,𝑖) ≤ 𝑀B

| B (𝑖) | . In each removing operation, the removed

slice satisfies that 𝑀B(𝑎,𝑖) ≤ 𝑀B
| B (𝑖) | and the sub-block B3 after the

removing operation satisfies condition 𝜌 (B3) ≥ 𝜌 (B), then we have
𝑓 (ˆB) ≥ 1

𝑁
𝑓 (B∗) .

Proof. The same as Lemma C.1 shows that the result of the par-

tition operation satisfies the 1/N-approximation guarantee. The re-

moving operation given below can also obtain the 1/N-approximation

guarantee, that is, the approximation ratio of RPA. Since B∗ maxi-

mizes 𝑓 (B), removing slice B∗ (𝑎, 𝑖) from B∗ will decrease its score,
i.e., 𝑓 (B∗ − B∗ (𝑎, 𝑖)) ≤ 𝑓 (B∗). Then, according to Equation 3, we

have

𝜌 (B∗ − B∗ (𝑎, 𝑖)) + 𝛿−1Υ (B
∗ − B∗ (𝑎, 𝑖)) ≤ 𝜌 (B∗) + 𝛿−1Υ (B

∗)
Obviously, removing a slice does not increase the spatial coverage

ratios, i.e., 𝛿−1Υ (B
∗−B∗ (𝑎, 𝑖)) ≥ 𝛿−1Υ (B

∗). Then, we can derive that

𝜌 (B∗ − B∗ (𝑎, 𝑖)) ≤ 𝜌 (B∗). By substituting Equation 1 in, we have

that

𝑀B∗−𝑀B∗ (𝑎,𝑖)
(𝐷B∗−1)/𝑁 ≤ 𝑀B∗

𝐷B∗/𝑁 and derive that

𝑀B∗ (𝑎,𝑖) ≥ 𝜌 (B∗)/𝑁 . (12)

In each removing operation, we have

𝜌 (ˆB) ≥ 𝜌 (B3) ≥ 𝜌 (B) . (13)

Since |B(𝑖) | ≥ 1

𝑁
𝐷B , we can derive that

𝜌 (B) = 𝑀B
𝐷B/𝑁

≥ 𝑀B
|B(𝑖) | . (14)

For the removed slice in removing operation B(𝑎, 𝑖), we have

𝑀B(𝑎,𝑖) ≤
𝑀B
|B(𝑖) | . (15)

Since B∗ ⊆ B, we have that
𝑀B(𝑎,𝑖) ≥ 𝑀B∗ (𝑎,𝑖) . (16)

Combining Equations 12–16, we can derive that

𝜌 (ˆB) ≥ 1

𝑁
𝜌 (B∗) . (17)

Since 𝛿−1Υ (ˆB) ≥
1

𝑁
, and 0 ≤ 𝛿−1Υ (B

∗) ≤ 1, it can be inferred that

𝛿−1Υ (ˆB) ≥
1

𝑁
𝛿−1Υ (B

∗). (18)

Combining Equations 17 and 18, we have 𝑓 (ˆB) ≥ 1

𝑁
𝑓 (B∗). Com-

bined with lemma C.1, we can get that the RPA algorithm satisfies

𝑓 (ˆB) ≥ 1

𝑁
𝑓 (B∗). □

D More Experiment Results
Spatial compactness visualization of the EA algorithm when
varying ℎ. Figure 12 plots the spatial locations of the tuples in

the top-3 blocks returned by the EA algorithm when varying ℎ

on dataset Foursquare. As ℎ increases, the spatial coverage ratio

becomes smaller. The reason is that the probability of combining

neighbor cells become low, since the mass of small cells is probably

low and cannot improve the score of the block to be expanded.

0 500 1000
0

500

1000

(a) h=10

0 500 1000
0

500

1000

(b) h=20

0 500 1000
0

500

1000

(c) h=50

0 500 1000
0

500

1000

(d) h=100

Figure 12: Spatial locations of the tuples in the top-3 blocks
found by the EA algorithm when varying ℎ on Foursquare.

1360

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition and Framework
	3.1 Problem Definition
	3.2 Filter-Refinement Framework

	4 Top-Down Solution
	4.1 Baseline: Removing Algorithm (RA)
	4.2 Partitioning Algorithm (PA)
	4.3 Combining RA and PA
	4.4 Slice Selection

	5 Bottom-Up Solution
	5.1 Cell Construction
	5.2 Expansion Algorithm (EA)

	6 Experiments
	7 Conclusion
	Acknowledgments
	References
	A Pseudo Code
	B Time Complexity
	C Approximation guarantee
	D More Experiment Results

