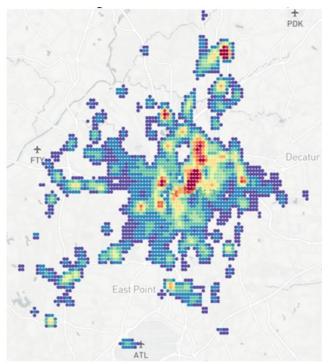
Data Visualization

Why Data Visualization?

- Easy to understand/discover the hidden information from data
- More impressive and intuitive
- Guide the data analysts to analyze data (first step for many data analysis tasks)

```
-84.38895
                -84.4168
               -84.40774
                -84.39674
 6 33.75947
                -84.36626
               -84.40133
 7 33.82838
 8 33.70537
               -84.45498
9 33.70121
                -84.45724
10 33.83193
                -84.42627
11 33.7604
                -84.38746
                -84.3516
13 33.77725
               -84.46072
                -84.36056
15 33.82674
               -84.36131
16 33.75946
                -84.38769
17 33.77101
                -84.38895
18 33.74075
                -84.39454
                -84.35916
20 33.82543
                -84.36706
                -84.37812
               -84.34501
                -84.35326
24 33.80253
                -84.39776
                -84.49901
25 33.77948
                -84.38855
                -84.40073
27 33.69935
28 33.7456
                -84.40378
               -84 38477
```



2

Density visualization of crime events in Atlanta, USA

Visualization Tools

- Scatter plot (link)
- Histogram (link)
- Kernel density visualization (KDV)
 - Spatial kernel density visualization (SKDV) (link 1, link 2, link 3, link 4, link 5)
 - Spatiotemporal kernel density visualization (STKDV) (link 1, link 2, link 3)
 - Network kernel density visualization (NKDV) (link 1, link 2)
 - Spatiotemporal network kernel density visualization (STNKDV) (link)
- Kriging (<u>link</u>)

Scatter Plot

• Directly plots data points in the map

Scatter plot of the data points of 1854 London cholera epidemic

Advantages of Scatter Plot

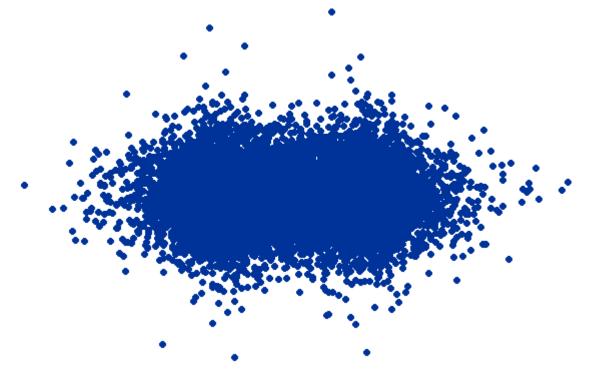
• Simple ©

• Show the patterns clearly for small data ©

• Time-efficient ©

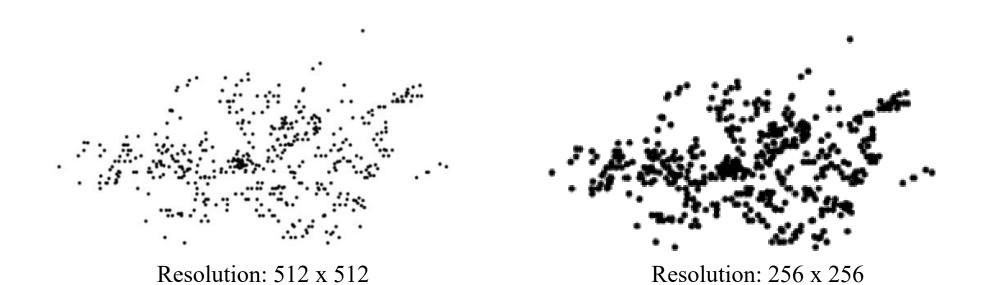
Overplotting Issues of Scatter Plot

- Difficult to find which parts contain more data points (Overplotting) 😊
 - This issue is more serious if the number of data points is much larger than the resolution size.



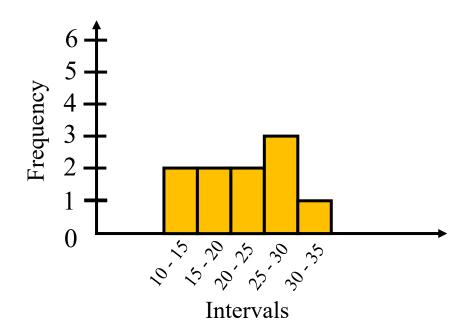
Overplotting Issues of Scatter Plot

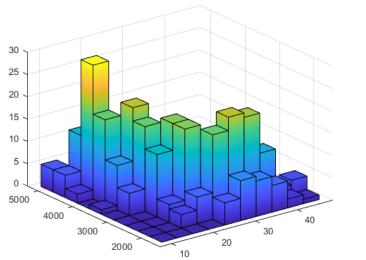
• Seriously suffer from the resolution changes 😊



Histogram

- Divide the space into different intervals/ sub-regions with the same size
- Count the frequency in each interval/sub-region
- Example: The grade for students 12.5, 14.8, 16.1, 16.8, 22.3, 24.1, 26.1, 26.6, 26.9, 31.2
- Generalize to multi-dimensional histogram





Advantages of Histogram

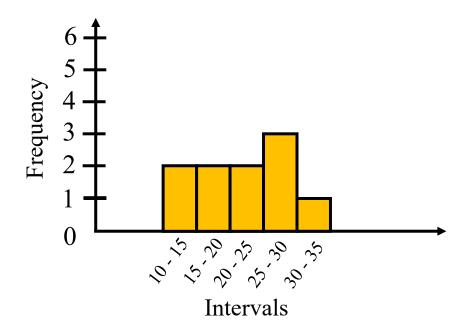
• Simple ©

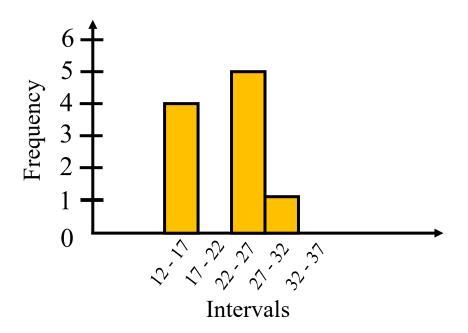
• Time-efficient ©

• Solve the overplotting issues ©

Histogram is Sensitive to the Pixel Positions

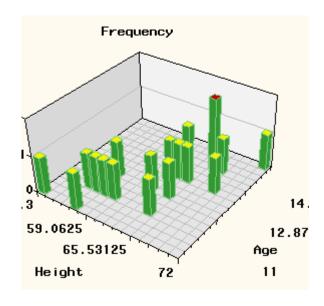
• Different starting point in the x-axis can significantly affect the visualization (link) ③





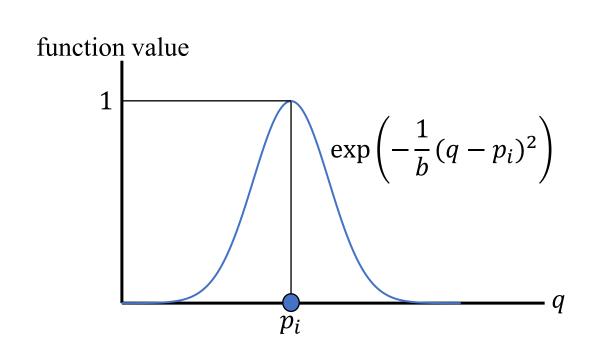
Histogram is Not Smooth

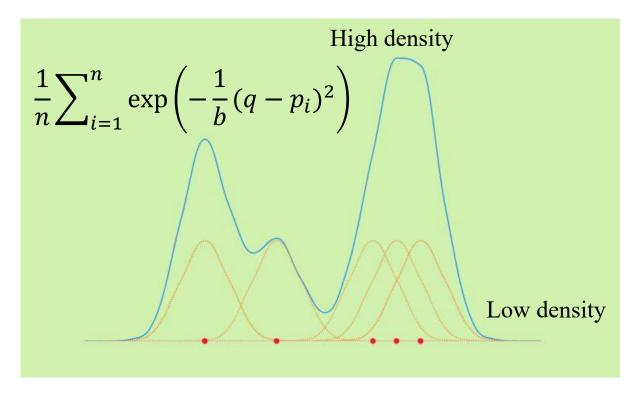
• The visualization is not smooth (There can be a huge change between two consecutive bins) 😊



Spatial Kernel Density Visualization (SKDV)

- Based on kernel density estimation
- One-dimensional case:

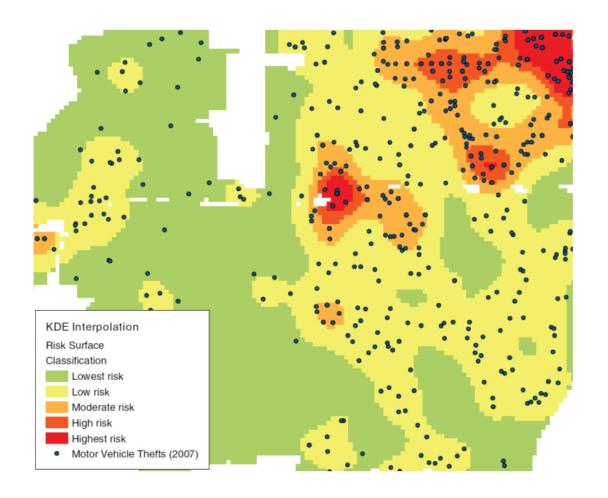




SKDV

Generalize to two-dimensional case

- Motor vehicle thefts in Arlington, Texas 2007 (link)
 - Each black dot denotes the crime event.
 - Region with red color denotes high density of crime.
 - Region with green color denotes low density of crime.

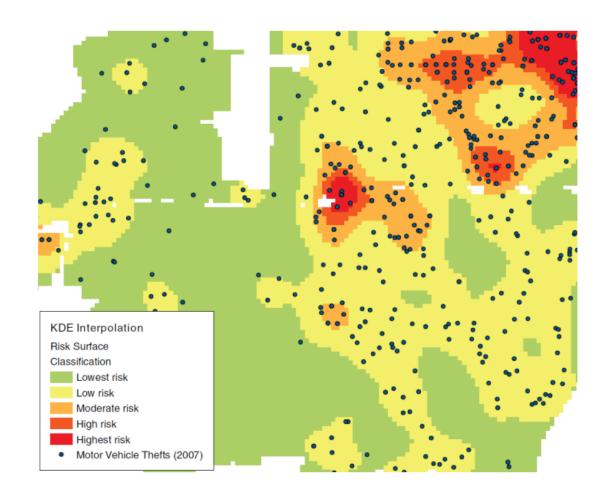


Problem Definition of SKDV

• Given a set of two-dimensional data points $P = \{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n\}$ with size n, the resolution size $X \times Y$, we need to compute the density of each pixel \mathbf{q} using the following kernel density function.

$$\mathcal{F}_P(\mathbf{q}) = \frac{1}{n} \sum_{\mathbf{p} \in P} K(\mathbf{q}, \mathbf{p})$$

• $K(\mathbf{q}, \mathbf{p})$ is the kernel function.



Representative Kernel Functions

Uniform kernel function

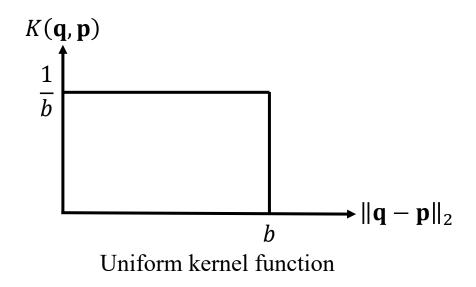
$$K(\mathbf{q}, \mathbf{p}) = \begin{cases} \frac{1}{b} & \text{if } \|\mathbf{q} - \mathbf{p}\|_2 \le b \\ 0 & \text{otherwise} \end{cases}$$

• Gaussian kernel function

$$K(\mathbf{q}, \mathbf{p}) = \exp\left(-\frac{1}{b^2} \|\mathbf{q} - \mathbf{p}\|_2^2\right)$$

Epanechnikov kernel

$$K(\mathbf{q}, \mathbf{p}) = \begin{cases} 1 - \frac{1}{b^2} \|\mathbf{q} - \mathbf{p}\|_2^2 & \text{if } \|\mathbf{q} - \mathbf{p}\|_2 \le b \\ 0 & \text{otherwise} \end{cases}$$



Advantages of SKDV

• Solve the overplotting issues ©

• Slightly shifting the region does not significantly affect the visualization ©

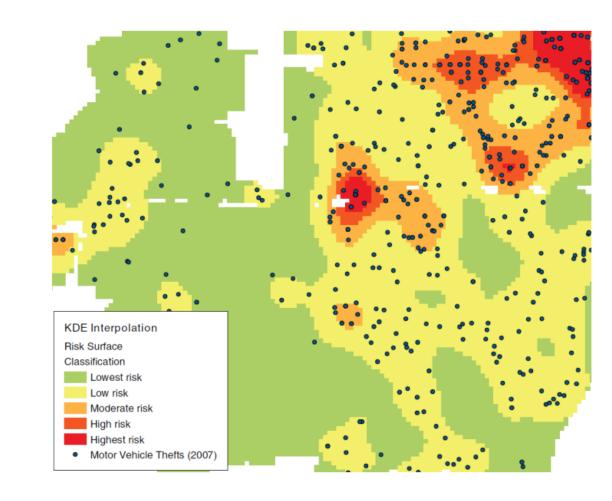
• Good visualization quality (Smooth) ©

SKDV is Slow

• Resolution size: $X \times Y$

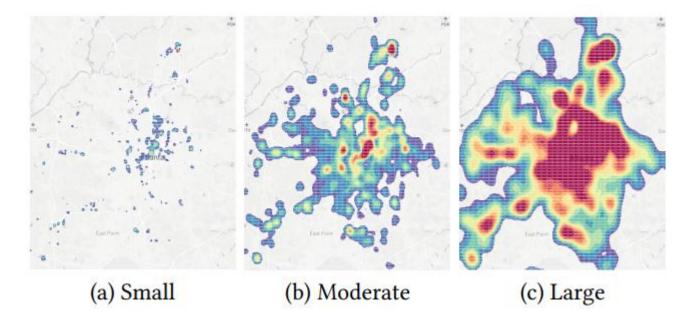
- Number of data points: n
- Time complexity: O(XYn) ☺

• Example: X = 512, Y = 512, and n = 2000000Time cost = 0.524 **trillion** Infeasible to handle this operation



Slow to Tune the Correct Bandwidth Parameter for SKDV

• Bandwidth parameter can significantly affect the visualization quality.



• Many domain experts adopt the trial-and-error approach to choose this bandwidth parameter b, which further deteriorates the inefficiency issue (link) ⊗

Efficient Algorithms for SKDV

• SAFE (link): the complexity-optimized solution for generating SKDVs with multiple bandwidths using some kernel functions, including uniform kernel and Epanechnikov kernel.

• SLAM (link): the complexity-optimized solution for generating a single SKDV with some kernel functions, including uniform kernel and Epanechnikov kernel.

• QUAD (link): the practically efficient solution for generating a single SKDV with all kernel functions.

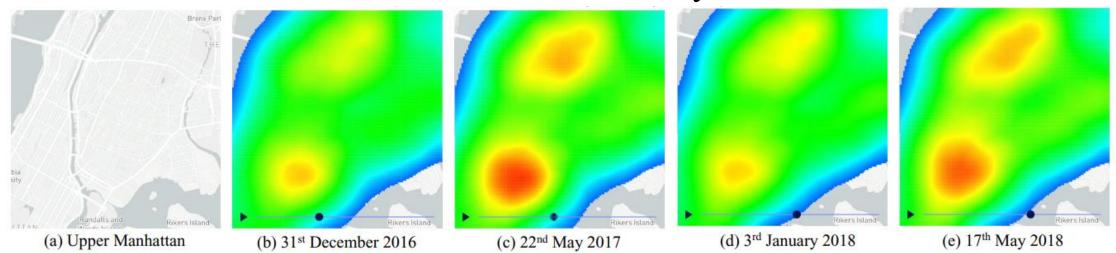
No Time Information for SKDV

- Time information is important for many applications.
 - Different waves of COVID-19 cases
 - Crime/ traffic accident blackspot patterns significantly depend on time.
- May provide misleading visualization 🕾

Spatial-Temporal Kernel Density Visualization (STKDV)

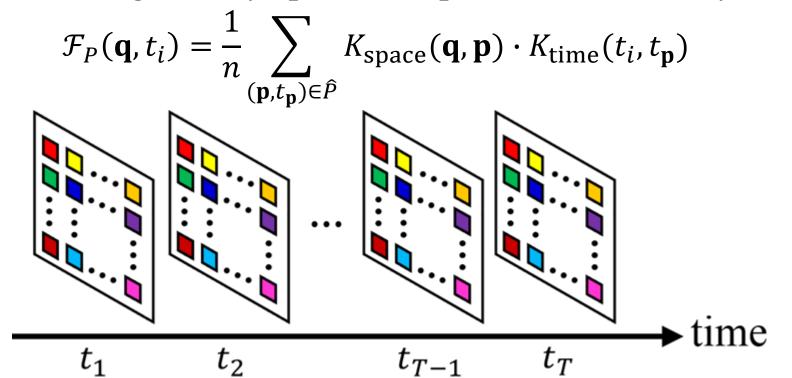
• The visualization of the COVID-19 density distribution in Hong Kong

• The visualization of the traffic accident density distribution in New York



Problem Definition of STKDV

• Given a set of data points $\hat{P} = \{(\mathbf{p}_1, t_{\mathbf{p}_1}), (\mathbf{p}_2, t_{\mathbf{p}_2}), ..., (\mathbf{p}_n, t_{\mathbf{p}_n})\}$ with size n, the resolution size $X \times Y$, and T timestamps $t_1, t_2, ..., t_T$, we need to color each pixel \mathbf{q} with the timestamp t_i , where $1 \le i \le T$, using the following density spatial-temporal kernel density function.



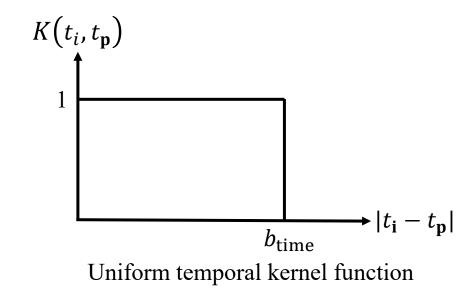
Representative Temporal Kernel Functions

Uniform kernel function

$$K(t_i, t_p) = \begin{cases} \frac{1}{b_{\text{time}}} & \text{if } |t_i - t_p| \le b_{\text{time}} \\ 0 & \text{otherwise} \end{cases}$$

• Gaussian kernel function

$$K(t_i, t_p) = \exp\left(-\frac{1}{b_{\text{time}}^2}(t_i - t_p)^2\right)$$



Epanechnikov kernel

$$K(t_i, t_{\mathbf{p}}) = \begin{cases} 1 - \frac{1}{b_{\text{time}}^2} (t_{\mathbf{i}} - t_{\mathbf{p}})^2 & \text{if } |t_{\mathbf{i}} - t_{\mathbf{p}}| \le b_{\text{time}} \\ 0 & \text{otherwise} \end{cases}$$

Advantages of STKDV

• Solve the overplotting issues ©

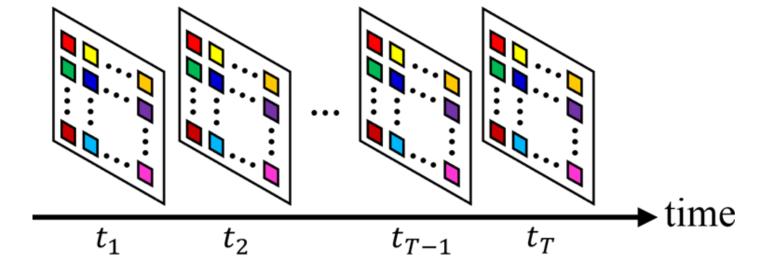
• Slightly shifting the region does not significantly affect the visualization ©

• Good visualization quality (Smooth) ©

• Capture the time information ©

STKDV is Slow

- Resolution size: $X \times Y$
- Number of data points: n
- Number of timestamps: T
- Time complexity: O(XYTn) \otimes
- Slower than SKDV 🕾



• Example:

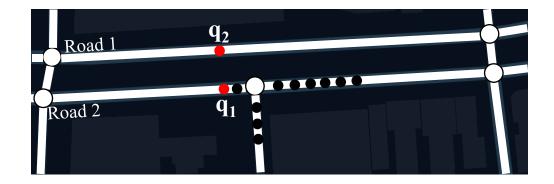
X = 512, Y = 512, n = 2000000, and T = 32Time cost = 16.777 **trillion** Infeasible to handle this operation

Efficient Algorithms for STKDV

- Parallel solution (link): A parallel approach for generating STKDV.
- SWS (<u>link 1</u>) and PREFIX (<u>link 2</u>): the complexity-optimized solutions for generating STKDV.
 - Theoretically reduce the time complexity.
 - SWS: O(XY(T+n))
 - PREFIX: O(XYT + Yn)
 - Do not increase the space complexity.
 - Can incorporate the parallel approach to further improve the efficiency (Section 9.5 in this <u>link 1</u>).

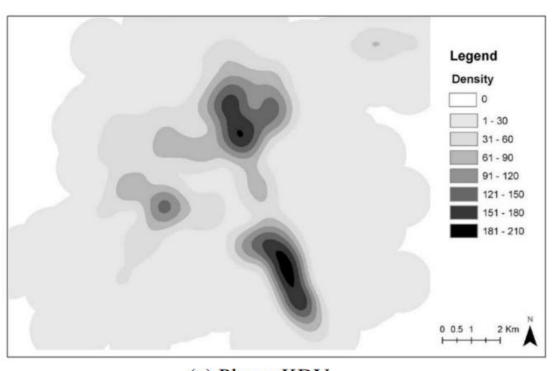
STKDV does not Consider the Road Network Information

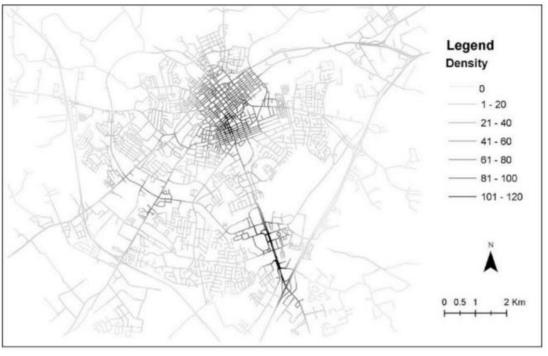
- Many data points can be in (or along with) the road network (link).
 - Traffic accidents
 - Crime events



• (Spatial-temporal) Kernel density function can regard the density values of \mathbf{q}_1 and \mathbf{q}_2 to be similar since they are close in terms of Euclidean distance.

Network Kernel Density Visualization (NKDV)





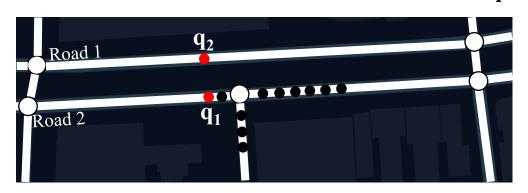
(a) Planar KDV

(b) Network KDV

Problem Definition of NKDV

• Given a road network G = (V, E) and a set of two-dimensional data points $P = \{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n\}$ with size n, the set of lixels, we need to compute the density of each lixel \mathbf{q} using the following network kernel density function.

$$\mathcal{F}_P(\mathbf{q}) = \frac{1}{n} \sum_{\mathbf{p} \in P} K_G(\mathbf{q}, \mathbf{p})$$



• $K_G(\mathbf{q}, \mathbf{p})$ is the kernel function, where we replace the Euclidean distance by the shortest path distance.

Advantages of NKDV

• Solve the overplotting issues ©

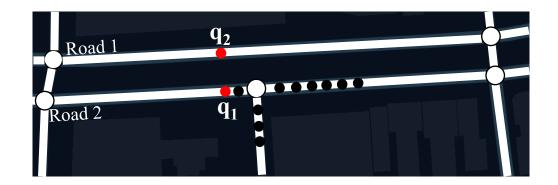
• Slightly shifting the region does not significantly affect the visualization ©

• Good visualization quality (Smooth) ©

• Capture the road network information.

NKDV is Slow

- Graph: G = (V, E)
- Number of lixels: L
- Number of data points: n
- Time complexity: $O(L(|V|\log_2|V| + |E| + n))$
- Example: In the New York road network, |V| = 41467, |E| = 116081, and n = 1294779. The time cost is at least 0.2376 trillion.



Efficient Algorithms for NKDV

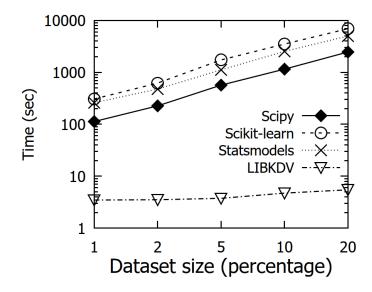
- Augmentation approach (link 1) and LION (link 2): the complexity-optimized solution for generating NKDV.
 - Theoretically reduce the time complexity.
 - Do not increase the space complexity.

Software Packages

- Python packages
 - LIBKDV (link)
 - PyNKDV (<u>link</u>)
- QGIS plugin
 - Fast Density Analysis (link)
- R package
 - Rlibkdv (link)
- Web-based spatial analysis systems
 - Hong Kong/Macau COVID-19 hotspot map (link 1) (link 2)
 - Spatial-Temporal Analytics with Rapid System (STARS) (link)

LIBKDV

- Efficient python library for supporting both SKDV and STKDV (link)
 - Based on SLAM and SWS
 - Has incorporated the parallel implementation for both SLAM and SWS



• Demonstration video of LIBKDV (link)

Fast Density Analysis

- An efficient QGIS plugin (link)
 - SKDV: based on SLAM
 - STKDV: based on PREFIX
 - NKDV: based on the augmentation approach

Version 🖣	Д ≑	QGIS >=	QGIS <=	\$ ♦	•	□ Date
1.7	-	3.0.0	3.99.0	3896	bojianzhu	2025年5月30日 GMT+8 11:42
1.6	-	3.0.0	3.99.0	13198	bojianzhu	2023年7月12日 GMT+8 15:55
1.5	-	3.0.0	3.99.0	444	bojianzhu	2023年7月6日 GMT+8 13:14
1.0	-	3.0.0	3.99.0	563	bojianzhu	2023年6月28日 GMT+8 02:24

• Demonstration video of Fast Density Analysis (link 1, link 2)

Spatial-Temporal Analytics with Rapid System (STARS)

- Support KDV, STKDV, and NKDV
- Support exploratory operations in (near) real-time (< 0.5 seconds)
 - Zoom in
 - Zoom out
 - Panning
- Available online (link)

Take Home Messages (For Your Career)

• Foundation (e.g., mathematics, data structures, algorithms, and computational theory) is very important.

• Many applied courses (e.g., web-programming, IoT, and blockchain) may be fun and useful for finding a job. However, only foundational courses can make you competitive.

• Computer science is a fast-changing subject. Most of the knowledge that I learnt five years ago can be outdated. However, foundational courses can never be outdated.