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Abstract
Spatiotemporal Kernel Density Visualization (STKDV) has been

widely used across various domains in geospatial analysis, e.g., ur-

ban planning, traffic/traffic accident hotspot analysis, crime hotspot

analysis, and disease spread modeling. However, STKDV is a com-

putationally expensive tool, which has been complained by many

domain experts. Although many recent solutions, including the

sliding-window-based solution (SWS) and the prefix-matrix-based

solution (PREFIX), have been proposed for improving the effi-

ciency of generating an exact STKDV, these solutions still can-

not be scalable to handle large-scale location datasets. To tackle

this efficiency issue, we propose the pioneering block compression

solution, called COMP, which can compress (or represent) a loca-

tion dataset by a small amount of blocks. By combining COMP

with the existing exact solutions, i.e., SWS and PREFIX, we show

that COMPSWS and COMPPREFIX can generate approximate STKDV

with an 𝜖-absolute error guarantee based on properly tuning the

block size. Experimental results on four large-scale location datasets

(up to 6.782 million data points) also verify that COMPSWS and

COMPPREFIX can achieve speedups of 4.1x to 677.16x and 1.45x to

143.52x compared with SWS and PREFIX, respectively, without

degrading the visualization results. The code of this paper can be

found in https://github.com/YovelaZ/COMP.

CCS Concepts
• Information systems→ Geographic information systems.
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1 Introduction
Heatmap [42] is a powerful visualization/data analysis tool that has

been extensively used for understanding the spatial distribution of

data points. Among most of the heatmap tools, Kernel Density Visu-

alization (KDV) [12, 15, 18, 23, 48] is commonly used across various

domains in geospatial analysis, including urban planning [32, 46],

traffic/traffic accident hotspot analysis [11, 45], crime hotspot anal-

ysis [27, 39], and disease spread modeling [22, 29]. Figure 1 shows

an example for using KDV to visualize hotspots using the San Fran-

cisco 311-call dataset [7]. Observe that the red region and the blue

region represent the 311-call hotspot and coldspot, respectively, in

San Francisco. Due to the importance of KDV, many contemporary

software packages have been developed for supporting this tool,

including Scikit-learn [35], ArcGIS [1], QGIS [6], and Seaborn [8].

(a) San Francisco 311 calls (b) Heatmap

Figure 1: Generating a heatmap (based on KDV) for the San
Francisco 311-call dataset.

However, a severe limitation of using KDV is that this tool solely

takes the location of each data point into account for generating

4098

https://github.com/YovelaZ/COMP
https://doi.org/10.1145/3711896.3736821
https://doi.org/10.1145/3711896.3736821
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711896.3736821&domain=pdf&date_stamp=2025-08-03


KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yue Zhong et al.

a heatmap, which disregards its occurrence time, leading to inac-

curate data analysis (or inaccurate interpretation of visualization).

Observe from Figure 2 that hotspots can dramatically change with

respect to different timestamps. For example, there are many 311-

call hotspot regions on 17
th
January 2010, while there are relatively

a few 311-call hotspot regions on 7
th
October 2011. As such, simply

using KDV (see Figure 1b) cannot provide correct hotspot interpre-

tation during a period of time.

(a) 1st September 2008 (b) 17th January 2010

(c) 7th October 2011 (d) 26th June 2013

Figure 2: Generating time-dependent heatmaps (based on
STKDV) for the San Francisco 311-call dataset.

To address this limitation, domain experts [27, 30] propose an

advanced tool, called Spatiotemporal Kernel Density Visualization

(STKDV), which generates time-dependent heatmaps (see Figure 2)

by considering both the spatial and temporal coordinates of each

location data point (e.g., yellow points in Figure 1a). Although this

tool has been well recognized (and extensively used) by domain

experts (e.g., [22, 27, 29, 30]), this tool suffers from high response

time. Consider a 𝑋 × 𝑌 -resolution plane, 𝑇 timestamps (e.g., 𝑇 = 4

in Figure 2), and 𝑛 data points. Generating STKDV takes 𝑂 (𝑋𝑌𝑇𝑛)
time. Using the Montgomery dataset [9] (with 1.83 million data

points) as an example, generating a 1280 × 960-resolution STKDV

with 32 timestamps takes 71.96 trillion operations, which cannot

be scalable to high-resolution sizes and large datasets.

Due to the efficiency issues of STKDV, various efficient solu-

tions have been recently proposed to reduce the time complexity

for using this tool, including the sliding-window-based solution

(SWS) [14] and the prefix-matrix-based solution (PREFIX) [16].

Among these two solutions, PREFIX is the state-of-the-art one,

which significantly reduces the time complexity of generating

STKDV to 𝑂 (𝑋𝑌𝑇 + 𝑌𝑛) without theoretically degrading the vi-

sualization quality. Despite this, the time complexity of PREFIX

depends on the term 𝑌𝑛, which can still be large (especially for

million-scale datasets) and is still dominated by 𝑛. Furthermore,

many data points in a location dataset are spatiotemporally close

to each other (see Figure 3), which can possibly be represented by

a compact dataset (i.e., with a small dataset size) without signifi-

cantly losing information (i.e., degrading the visualization quality of

STKDV). Therefore, a key research question arises: can we develop
an effective data compression method for a location dataset so that
generating STKDV (with an existing solution) in a returned compact
dataset retains the similar visualization quality?

Figure 3: The distribution of San Francisco 311-call data
points.

To provide a definite answer to this question, we propose a new

block compression solution, called COMP, which, to the best of our

knowledge, is the first solution that can successfully compress (or

represent) a location dataset by a small amount of blocks. Once we

combine COMP with the existing exact solutions, namely SWS and

PREFIX, we show that COMPSWS and COMPPREFIX can achieve a

non-trivial 𝜖-absolute error guarantee for generating STKDV by

rigorously tuning the block size based on the 𝜖 parameter. Our ex-

perimental results with four large-scale location datasets (with up

to 6.782 million data points) verify that COMPSWS and COMPPREFIX

can achieve speedups of 4.1x to 677.16x and 1.45x to 143.52x com-

pared with the existing SWS and PREFIX solutions, respectively,

without degrading the visualization results.

The rest of the paper is structured as follows. We first formally

define the STKDV problem and outline the existing solutions (i.e.,

SWS and PREFIX) in Section 2. Then, we discuss our block com-

pression solution (i.e., COMP) in Section 3. Next, we provide the

experimental evaluation in Section 4. After that, we review the re-

lated studies in Section 5. Lastly, we conclude this paper in Section 6.

Appendix can be found in Section 7.

2 Preliminaries
In this section, we first formally define the STKDV problem in

Section 2.1. Then, we discuss two existing solutions in Section 2.2.

2.1 Problem Statement
In order to generate STKDV (see Figure 2) with a location dataset

(see Figure 1a), we need to color each pixel-timestamp pair (q, 𝑡𝑖 )
based on the spatiotemporal kernel density function ℱ𝑃 (q, 𝑡𝑖 ),
which is formally stated in Definition 1.

Definition 1. Given a resolution size𝑋 ×𝑌 ,𝑇 timestamps (i.e., 𝑡1,
𝑡2,..., 𝑡𝑇 ), and a location dataset 𝑃 = {(p1, 𝑡p1 ), (p2, 𝑡p2 ), ..., (p𝑛, 𝑡p𝑛 )}
with size 𝑛, we need to compute the spatiotemporal kernel density
function ℱ𝑃 (q, 𝑡𝑖 ) for each pixel-timestamp pair (q, 𝑡𝑖 ).

ℱ𝑃 (q, 𝑡𝑖 ) =
1

𝑛

∑︁
(p,𝑡p ) ∈𝑃

𝐾space (q, p) · 𝐾time (𝑡𝑖 , 𝑡p) (1)

where𝐾space (q, p) and𝐾time (𝑡𝑖 , 𝑡p) are the spatial and temporal kernel
functions, which are summarized in Table 1.
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Table 1: Some widely used spatial kernel functions (𝐾space (q, p)) and temporal kernel functions (𝐾time (𝑡𝑖 , 𝑡p)), where 𝑏𝜎 and 𝑏𝜏
denote the spatial bandwidth and the temporal bandwidth, respectively.

Kernel 𝐾space (q, p) 𝐾time (𝑡𝑖 , 𝑡p ) References

Triangular

{
1 − 1

𝑏𝜎
| |q − p | |2 if | |q − p | |2 ≤ 𝑏𝜎

0 otherwise

{
1 − 1

𝑏𝜏
|𝑡𝑖 − 𝑡p | if |𝑡𝑖 − 𝑡p | ≤ 𝑏𝜏

0 otherwise

[14, 33]

Epanechnikov

{
3

4
·
(
1 − 1

𝑏2𝜎
| |q − p | |2

2

)
if | |q − p | |2 ≤ 𝑏𝜎

0 otherwise

{
3

4
·
(
1 − 1

𝑏2𝜏
(𝑡𝑖 − 𝑡p )2

)
if |𝑡𝑖 − 𝑡p | ≤ 𝑏𝜏

0 otherwise

[22, 27]

Quartic

{
15

16
·
(
1 − 1

𝑏2𝜎
| |q − p | |2

2

)
2

if | |q − p | |2 ≤ 𝑏𝜎
0 otherwise

{
15

16
·
(
1 − 1

𝑏2𝜏
(𝑡𝑖 − 𝑡p )2

)
2

if |𝑡𝑖 − 𝑡p | ≤ 𝑏𝜏
0 otherwise

[16, 30]

2.2 Existing Solutions
Here, we discuss the core ideas of two existing solutions, which are

(1) sliding-window-based solution (SWS) [14] and (2) prefix-matrix-

based solution (PREFIX) [16], that can improve the efficiency for

generating STKDV.

Sliding-window-based solution (SWS).Observe from Table 1 that

only those data points (p𝑗 , 𝑡p𝑗 ) with |𝑡𝑖 − 𝑡p𝑗 | ≤ 𝑏𝜏 can contribute to

the spatiotemporal kernel density function (see Equation 1). There-

fore, Chan et al. [14] propose to first maintain a sliding window

𝑊 (𝑡𝑖 ) (i.e., the orange one in Figure 4) in the time-axis. With this

sliding window, they can representℱ𝑃 (q, 𝑡𝑖 ) based on the statistical

terms 𝑆
(𝑢 )
𝑊 (𝑡𝑖 ) (q) (where 𝑢 is the positive integer that depends on

the temporal kernel function). Using the Epanechnikov function as

an example of the temporal kernel (see Table 1), ℱ𝑃 (q, 𝑡𝑖 ) can be

decomposed as follows.

ℱ𝑃 (q, 𝑡𝑖 ) =
3

4𝑛

((
1 −

𝑡2𝑖

𝑏2𝜏

)
𝑆
(0)
𝑊 (𝑡𝑖 ) (q) +

2𝑡𝑖

𝑏2𝜏
𝑆
(1)
𝑊 (𝑡𝑖 ) (q) −

1

𝑏2𝜏
𝑆
(2)
𝑊 (𝑡𝑖 ) (q)

)
(2)

where

𝑆
(𝑢 )
𝑊 (𝑡𝑖 ) (q) =

∑︁
(p,𝑡p ) ∈𝑊 (𝑡𝑖 )

𝑡𝑢p · 𝐾space (q, p) (3)

Then, they propose to avoid the redundant computation (i.e.,

avoid scanning the green circles in𝑊 (𝑡𝑖 ) ∩𝑊 (𝑡𝑖+1) in Figure 4)

between two sliding windows by utilizing the following property.

𝑆
(𝑢 )
𝑊 (𝑡𝑖+1 ) (q) = 𝑆

(𝑢 )
𝑊 (𝑡𝑖 ) (q) +𝑆

(𝑢 )
𝐼 (𝑊 (𝑡𝑖 ),𝑊 (𝑡𝑖+1 ) ) (q) −𝑆

(𝑢 )
𝐷 (𝑊 (𝑡𝑖 ),𝑊 (𝑡𝑖+1 ) ) (q)

(4)

𝑡𝑖 𝑡𝑖+1

𝑏𝜏 𝑏𝜏

𝑊(𝑡𝑖+1)

𝑊(𝑡𝑖) 𝐼 𝑊(𝑡𝑖 ,𝑊(𝑡𝑖+1))

𝐷 𝑊(𝑡𝑖 ,𝑊(𝑡𝑖+1))

…
time

Figure 4: Illustration of SWS, where those circles denote the
data points (p𝑗 , 𝑡p𝑗 ) in a location dataset and the squares rep-
resent the pixel-timestamp pairs, i.e., (q, 𝑡𝑖 ) and (q, 𝑡𝑖+1).

With this approach, they further show that evaluating the density

values with𝑇 timestamps for a pixel q is𝑂 (𝑇 + 𝑛), which indicates

that generating STKDV (with 𝑋 × 𝑌 pixels) is 𝑂 (𝑋𝑌 (𝑇 + 𝑛)) time.

Prefix-matrix-based solution (PREFIX). Instead of considering

each pixel independently in SWS, Chan et al. [16] aim to first main-

tain the prefix-matrix with respect to all 𝑋 × 𝑌 pixels for each end

point in the time axis (see Figure 5). Here, we let 𝑡𝑒 be one of the

end points. We have 𝑃 (𝑡𝑒 ) = {(p, 𝑡p) ∈ 𝑃 : 𝑡p ≤ 𝑡𝑒 }. As an example,

𝑃 (𝑡𝑖 + 𝑏𝜏 ) denotes all black data points that are just before 𝑡𝑖 + 𝑏𝜏
in Figure 5. Once they have all prefix-matrices, they then evalu-

ate each 𝑆
(𝑢 )
𝑊 (𝑡𝑖 ) (q) based on the following equation and compute

ℱ𝑃 (q, 𝑡𝑖 ) (see Equation 2) for all pixels q.

𝑆
(𝑢 )
𝑊 (𝑡𝑖 ) (q) = 𝑆

(𝑢 )
𝑃 (𝑡𝑖+𝑏𝜏 ) (q) − 𝑆

(𝑢 )
𝑃 (𝑡𝑖−𝑏𝜏 ) (q) (5)

𝑡𝑖 𝑡𝑖+1
time

𝑡𝑖 − 𝑏𝜏 𝑡𝑖 + 𝑏𝜏

𝑡𝑖+1 − 𝑏𝜏 𝑡𝑖+1 + 𝑏𝜏
…

…
… …
…

…
… …
…

…
… …
…

…
… …
…

Figure 5: Illustration of PREFIX, where the orange planes
(the blue planes) denote the prefix matrices, 𝑆 (𝑢 )

𝑃 (𝑡𝑖−𝑏𝜏 ) (q) and
𝑆
(𝑢 )
𝑃 (𝑡𝑖+𝑏𝜏 ) (q) (𝑆

(𝑢 )
𝑃 (𝑡𝑖+1−𝑏𝜏 ) (q) and 𝑆

(𝑢 )
𝑃 (𝑡𝑖+1+𝑏𝜏 ) (q)), for the end points,

𝑡𝑖 − 𝑏𝜏 and 𝑡𝑖 + 𝑏𝜏 (𝑡𝑖+1 − 𝑏𝜏 and 𝑡𝑖+1 + 𝑏𝜏 ).

By adopting this approach, they show that the time complexity

of generating STKDV with 𝑇 timestamps can be further reduced to

𝑂 (𝑋𝑌𝑇 + 𝑌𝑛).

3 Our Solution
In this section, we first discuss the core idea of block compression

in Section 3.1. Then, we illustrate how to tune the proper block size

in Section 3.2. Lastly, we provide the block compression algorithm

in Section 3.3.

3.1 Core Idea of Block Compression
Observe from Figure 3 that many red data points are spatiotem-

porally close to each other. Therefore, we ask a question. Can we
compress this dataset so that generating the STKDV for this compact
dataset can provide similar visualization quality compared with the
STKDV for the original dataset? To provide an affirmative answer

to this question, we propose to adopt a set of blocks S to cover

a dataset (see Figure 6). Hence, we can represent ℱ𝑃 (q, 𝑡𝑖 ) (see
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Equation 1) based on S.

ℱ𝑃 (q, 𝑡𝑖 ) =
1

𝑛

∑︁
B∈S

∑︁
(p,𝑡p ) ∈B

𝐾space (q, p) · 𝐾time (𝑡𝑖 , 𝑡p) (6)

where B denotes each block that covers its data points. As an

example, the block B in Figure 6 covers four data points (the black

spheres), i.e., C(B) = 4.

𝑥

𝑦

𝑡

Block ℬ

(𝐩ℬ , 𝑡𝐩ℬ)

ℂ ℬ = 4

𝜔ℬ

𝜔ℬ

𝜆ℬ

Figure 6: Illustration of the core idea of block compression,
where each black sphere denotes the location data point
(p, 𝑡p), the red sphere denotes the center point (pB, 𝑡pB ) of
the block B (with size 𝜔B ×𝜔B × 𝜆B ), and B covers four loca-
tion data points (i.e., C(B) = 4).

Observe that we aim to use the center (pB, 𝑡pB ) (i.e., the red

sphere) to represent all data points (i.e., the black spheres) in each

blockB. Based on this concept, we have the approximate spatiotem-

poral kernel density function 𝐴S (q, 𝑡𝑖 ) based on S.

𝐴S (q, 𝑡𝑖 ) =
1

𝑛

∑︁
B∈S

C(B) · 𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡pB ) (7)

In order to ensure that this block compression approach does not

degrade the visualization quality, the approximate value 𝐴S (q, 𝑡𝑖 )
should only deviate from the exact value ℱ𝑃 (q, 𝑡𝑖 ) by a small abso-

lute error 𝜖 (see Definition 2).

Definition 2. Given a location dataset 𝑃 and an absolute error
𝜖 , we need to construct a set of blocks S in order to generate an
approximate STKDV based on 𝐴S (q, 𝑡𝑖 ), where

|𝐴S (q, 𝑡𝑖 ) −ℱ𝑃 (q, 𝑡𝑖 ) | ≤ 𝜖 (8)

3.2 How to Tune the Proper Block Size?
One major challenge for using the block compression approach is

that it is non-trivial to tune the proper block size 𝜔B × 𝜔B × 𝜆B
(see Figure 6). Suppose that the block size is very large. Each block

B can cover more data points (with large C(B)), which can achieve

the fast evaluation of 𝐴S (q, 𝑡𝑖 ) (due to a smaller number of blocks

in S). Despite this, it can cause an inaccurate value of 𝐴S (q, 𝑡𝑖 ),
which violates the error guarantee (see Definition 2). In contrast,

a small block size can easily achieve the error guarantee, while

it provides a large number of blocks in S (resulting in the slow

evaluation of𝐴S (q, 𝑡𝑖 )). Therefore, we ask a question. Can we find a
set of blocks S so that (1) the error guarantee (Definition 2) is fulfilled
and (2) the block size 𝜔B × 𝜔B × 𝜆B is the largest?

To answer the above question, we analyze Equation 8. Consider

each data point (p, 𝑡p) in any block B (with the center (pB, 𝑡pB )).

Once |𝐾space (q, pB) ·𝐾time (𝑡𝑖 , 𝑡pB )−𝐾space (q, p) ·𝐾time (𝑡𝑖 , 𝑡p) | ≤ 𝜖 for
any pixel-timestamp pair (q, 𝑡𝑖 ), we can conclude that Equation 8

holds (see Lemma 1). The proof of this lemma can be found in

Section 7.1 of Appendix.

Lemma 1. Given any block B (with its center (pB, 𝑡pB )) and any
data point (p, 𝑡p) in B, the error guarantee (i.e., Equation 8) holds if
the following property holds for any pixel-timestamp pair (q, 𝑡𝑖 ).
|𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾space (q, p) · 𝐾time (𝑡𝑖 , 𝑡p) | ≤ 𝜖 (9)

With Lemma 1, instead of considering all data points in 𝑃 and

all blocks in S (see Equation 8), we can simplify this constraint by

only considering those data points (p, 𝑡p) in a single block B (see

Equation 9).

In order to fulfill the constraint of Equation 9, we first con-

sider the property of spatial and temporal kernel functions, i.e.,

𝐾space (q, p) and 𝐾time (𝑡𝑖 , 𝑡p), respectively. Here, after we let 𝑥 =

| |q − p| |2 (or 𝑥 = |𝑡𝑖 − 𝑡p |), we can have another function K(𝑥)
so that K(𝑥) = 𝐾space (q, p) (or K(𝑥) = 𝐾time (𝑡𝑖 , 𝑡p)). Using the

Epanechnikov kernel as an example (see Table 1), we have (by

setting 𝑏 = 𝑏𝜎 and 𝑏 = 𝑏𝜏 for spatial kernel and temporal kernel,

respectively)

K(𝑥) = 3

4

·
{
1 − 𝑥2

𝑏2
if 𝑥 ≤ 𝑏

0 otherwise

(10)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8
𝑥

if  𝑥 ≤ 𝑏

otherwise

𝑥1 𝑥2 𝑏 𝑚max𝑥1
′ 𝑥2

′

𝒦 𝑥 =
3

4
∙ ቐ1 −

𝑥2

𝑏2

0

𝒦(𝑥)

Figure 7: Illustration ofK(𝑥) using the Epanechnikov kernel,
where𝑚max denotes themaximum absolute value of the slope
of K(𝑥) for all 𝑥 .

Figure 7 depicts the K(𝑥) function, which corresponds to the

Epanechnikov kernel, with respect to 𝑥 . Observe that the absolute

value of the slope between any two points, e.g., the black dashed

line that connects (𝑥1,K(𝑥1)) and (𝑥2,K(𝑥2)) and the pink dashed

line that connects (𝑥 ′
1
,K(𝑥 ′

1
)) and (𝑥 ′

2
,K(𝑥 ′

2
)), must be smaller

than𝑚max (where𝑚max denotes the maximum absolute value of the

slopes of K(𝑥) for all 𝑥). Hence, we have the following Lemma 2.

The proof of this lemma can be found in Section 7.2 of Appendix.

Lemma 2. Given any two positive values, 𝑥1 and 𝑥2, in the x-axis
andK(𝑥) that corresponds to any kernel function in Table 1, we have���K(𝑥1) − K(𝑥2)

𝑥1 − 𝑥2

��� ≤𝑚max (11)

where𝑚max =max𝑥

(��𝑑K(𝑥 )
𝑑𝑥

��) .
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Table 2 summarizes the𝑚
(𝜎 )
max

and𝑚
(𝜏 )
max

values with respect to

the spatial and temporal kernel functions, respectively, in Table 1.

We discuss how to derive them in Section 7.3 of Appendix.

Table 2: Summarization of different𝑚 (𝜎 )
max

(for spatial kernels)
and𝑚 (𝜏 )

max
(for temporal kernels) values.

Kernel 𝑚
(𝜎 )
max

𝑚
(𝜏 )
max

Triangular
1

𝑏𝜎

1

𝑏𝜏

Epanechnikov
3

2𝑏𝜎

3

2𝑏𝜏

Quartic
5

√
3

6𝑏𝜎

5

√
3

6𝑏𝜏

Based on Lemma 2, we further show that the deviation be-

tween two spatial (or temporal) kernel values, i.e., |𝐾space (q, pB) −
𝐾space (q, p) | (or |𝐾time (𝑡𝑖 , 𝑡pB ) −𝐾time (𝑡𝑖 , 𝑡p) |), is bounded by the pa-

rameter of the block size 𝜔B (or 𝜆B ) and 𝑚
(𝜎 )
max

(or 𝑚
(𝜏 )
max

), which

is stated in Lemma 3. The proof of this lemma can be found in

Section 7.4 of Appendix.

Lemma 3. Given any pixel-timestamp pair (q, 𝑡𝑖 ), the blockB with
the center (pB, 𝑡pB ) and the size 𝜔B × 𝜔B × 𝜆B , and any data point
(p, 𝑡p) in B, the deviations between two spatial kernel values and two
temporal kernel values have the following bounds, i.e., Equation 12
and Equation 13, respectively.

|𝐾space (q, pB) − 𝐾space (q, p) | ≤
√
2 · 𝜔B ·𝑚 (𝜎 )max

2

(12)

|𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾time (𝑡𝑖 , 𝑡p) | ≤
𝜆B ·𝑚 (𝜏 )max

2

(13)

After we have obtained these bounds in Lemma 3, we can con-

clude in Theorem 1 that the error guarantee (see Definition 2) can

be fulfilled (by illustrating how Equation 9 in Lemma 1 is satisfied)

if we set the proper block size𝜔B×𝜔B×𝜆B in each kernel function.

Theorem 1. Given a location dataset 𝑃 and an absolute error 𝜖 ,
we can achieve the absolute error guarantee 𝜖 in Definition 2 if 𝜔B
and 𝜆B of each block B in S have the following settings.

(1) 𝜔B =
√
2·𝜖 ·𝑏𝜎
2

and 𝜆B = 𝜖 ·𝑏𝜏 using the triangular spatial and
temporal kernels.

(2) 𝜔B =
4

√
2·𝜖 ·𝑏𝜎
9

and 𝜆B =
8·𝜖 ·𝑏𝜏

9
using the Epanechnikov spatial

and temporal kernels.
(3) 𝜔B =

16

√
6·𝜖 ·𝑏𝜎
75

and 𝜆B =
32

√
3·𝜖 ·𝑏𝜏
75

using the quartic spatial
and temporal kernels.

Proof. In this proof, we focus on (2) (i.e., the Epanechnikov

spatial and temporal kernels). Based on the similar concept, we can

easily extend this proof for other kernels.

By considering Equation 12 in Lemma 3 and the temporal kernel

𝐾time (𝑡𝑖 , 𝑡p) > 0, we have

|𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡p) − 𝐾space (q, p) · 𝐾time (𝑡𝑖 , 𝑡p) |

≤
√
2 · 𝜔B ·𝑚 (𝜎 )max

2

𝐾time (𝑡𝑖 , 𝑡p) (14)

By considering Equation 13 in Lemma 3 and the spatial kernel

𝐾space (q, pB) > 0, we also have

|𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡p) |

≤ 𝜆B ·𝑚 (𝜏 )max

2

𝐾space (q, pB) (15)

Therefore, we consider the term |𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡pB ) −
𝐾space (q, p) · 𝐾time (𝑡𝑖 , 𝑡p) | in Lemma 1. Based on Equation 14 and

Equation 15, we can obtain the following bound.

|𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾space (q, p) · 𝐾time (𝑡𝑖 , 𝑡p) |
= |𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡p)
+ 𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡p) − 𝐾space (q, p) · 𝐾time (𝑡𝑖 , 𝑡p) |
≤ |𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡p) |
+ |𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡p) − 𝐾space (q, p) · 𝐾time (𝑡𝑖 , 𝑡p) |

≤ 𝜆B ·𝑚 (𝜏 )max

2

𝐾space (q, pB) +
√
2 · 𝜔B ·𝑚 (𝜎 )max

2

𝐾time (𝑡𝑖 , 𝑡p)

Since we consider the Epanechnikov spatial and temporal kernels,

we have 𝐾space (q, pB) ≤ 3

4
, 𝐾time (𝑡𝑖 , 𝑡p) ≤ 3

4
, 𝑚
(𝜎 )
max

= 3

2𝑏𝜎
, and

𝑚
(𝜏 )
max

= 3

2𝑏𝜏
(see Table 1 and Table 2). Therefore, we have

|𝐾space (q, pB) · 𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾space (q, p) · 𝐾time (𝑡𝑖 , 𝑡p) |

≤ 9𝜆B
16𝑏𝜏

+ 9

√
2𝜔B

16𝑏𝜎

Hence, by setting
9𝜆B
16𝑏𝜏

= 𝜖
2
and

9

√
2𝜔B

16𝑏𝜎
= 𝜖

2
, i.e., 𝜆B =

8·𝜖 ·𝑏𝜏
9

and

𝜔B =
4

√
2·𝜖 ·𝑏𝜎
9

, respectively, Equation 9 is fulfilled, which indicates

that the error guarantee (see Equation 8) holds (based on Lemma 1).

□

3.3 Block Compression Algorithm (COMP)
Once we have determined the block size 𝜔B × 𝜔B × 𝜆B , we can
establish the set of blocks S in order to compute 𝐴S (q, 𝑡𝑖 ) (see
Equation 7).

Algorithm 1 Block Compression Algorithm for Generating Ap-

proximate STKDV

1: procedure COMP(𝑃 = {(p1, 𝑡p1 ), (p2, 𝑡p2 ), ..., (p𝑛, 𝑡p𝑛 )}, spatial
bandwidth 𝑏𝜎 , temporal bandwidth 𝑏𝜏 , error parameter 𝜖)

2: Compute 𝜔B and 𝜆B ⊲ Theorem 1

3: S ← 𝜙

4: for each (p, 𝑡p) ∈ 𝑃 do
5: Identify the correct block B for (p, 𝑡p)
6: if B ∈ S then
7: C(B) ← C(B) + 1
8: else
9: C(B) ← 1

10: S ← S ∪ B
11: Generate STKDV with 𝐴S (q, 𝑡𝑖 ) (based on S)

Algorithm 1 shows the pseudocode of this method, namely

COMP. We first find 𝜔B and 𝜆B (see line 2) in order to obtain

the block size. Then, we assign each data point into the correct

block B for establishing S (see line 4 to line 10). Note that many

blocks B can have no data point (i.e., C(B) = 0), which cannot

contribute to 𝐴S (q, 𝑡𝑖 ). Using Figure 3 as an example, observe that

some regions do not contain any data point. Therefore, instead of

maintaining all blocks in S (which can consume huge space and re-

sponse time), we only keep those blocks B with C(B) > 0 in S (see

line 10). After we have obtained S, we can generate approximate

STKDV with𝐴S (q, 𝑡𝑖 ) by adopting the existing solutions, including
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SWS and PREFIX (see Section 2.2), since 𝐴S (q, 𝑡𝑖 ) (see Equation 7)

is similar to the original spatiotemporal kernel density function

F𝑃 (q, 𝑡𝑖 ) (see Equation 1). Theorem 2 shows the time complexity of

COMP.

Theorem 2. The time complexity of Algorithm 1 is𝑂 (TALG( |S | ) +
𝑛 log |S|), where TALG( |S | ) represents the time complexity of any
exact algorithm ALG to compute STKDV with the size |𝑆 |.

Proof. Since we do not maintain all blocks in the set S, we need
to use the vector structure (instead of the cube structure in Figure 6),

in which each entry stores the position index of the block B and

the block center (pB, 𝑡pB ), to maintain S. Therefore, for each data

point (p, 𝑡p), we first use𝑂 (1) time to identify the correct (position

index of) block B (in line 5), due to the same size 𝜔B ×𝜔B × 𝜆B of

each block. Then, we need to adopt the binary search method to

check whether B is in S (line 6 and line 8), which takes 𝑂 (log |S|)
time in the worst case. If B is in S, we need to increase its count

value C(B) (with 𝑂 (1) time in line 7). Otherwise, we need to set

the count value C(B) of this new block B to be 1 (with 𝑂 (1) time

in line 9) and insert this block (based on the binary search method)

into S (with𝑂 (log |S|) time in line 10). Hence, the time complexity

of the loop (from line 4 to line 10) is𝑂 (𝑛 log |S|). With this setS, we
further adopt any exact algorithm ALG, which takes 𝑂 (TALG( |S | ) )
time, for computing STKDV (line 11). Hence, the time complexity

of this algorithm is 𝑂 (TALG( |S | ) + 𝑛 log |S|). □

As a remark, the smaller the size of S (with |S| << 𝑛), the faster
the performance compared with existing methods (with𝑂 (TALG(𝑛) )
time).

4 Experimental Evaluation
In this section, we first discuss the experimental setup in Section 4.1.

Then, we verify the compression effectiveness of COMP in Sec-

tion 4.2. Lastly, we test the efficiency performance and accuracy

performance of all methods in Section 4.3 and Section 4.4, respec-

tively. Additional experiments can be found in Section 7.5 of Ap-

pendix.

4.1 Experimental Setup
We adopt four large-scale location datasets for testing, which are

summarized in Table 3. All these datasets are open to public from dif-

ferent governments. We combine our block compression algorithm

(a.k.a. COMP) with the state-of-the-art STKDV methods, SWS [14]

and PREFIX [16], which are denoted as COMPSWS and COMPPREFIX,

respectively, and measure their efficiency performance and accu-

racy performance against these two existing methods.

Table 3: Datasets.
Name 𝑛 Category Ref.

Montgomery 1,830,268 Traffic violations [9]

New York 1,867,735 Traffic accidents [5]

Chicago 5,286,309 Taxi pick-up locations [2]

San Francisco 6,782,726 311 calls [7]

To conduct our experiments, we follow the settings of [14, 16],

by choosing the default spatial resolution and the default number of

timestamps to be 1280 × 960 and 32, respectively, and adopting the

Scott’s rule [14, 42] to set the default spatial bandwidth 𝑏𝜎 and tem-

poral bandwidth 𝑏𝜏 . Furthermore, we also set the default absolute

error 𝜖 to be 0.05 for COMP. All the methods are implemented in

C++ and experiments are conducted on an Intel i7 2.4GHz PC with

16GB memory. We omit the experiment results for those methods

that take more than 259,200 sec (i.e., three days). As a remark, we

only test all methods using the Epanechnikov spatial and tempo-

ral kernels in this section. All those experiments that are related

to other kernel functions, including triangular kernel and quartic

kernel, can be found in Section 7.5 of Appendix.

4.2 Compression Effectiveness of COMP
In this experiment, we investigate the compression effectiveness

(i.e., the number of blocks in S) of COMP by using different ab-

solute error 𝜖 (ranging from 0.005 to 0.09). Figure 8 shows the

results in different location datasets. Observe that the smaller the

absolute error 𝜖 , the smaller the block size 𝜔B × 𝜔B × 𝜆B (see

Theorem 1), resulting in the larger number of blocks |S|. Note that
COMP can already achieve a small |S| although we adopt a small 𝜖 .

For example, |S| = 36,970 for the New York traffic accident dataset

with 𝜖 = 0.05, which is only 1.979% compared with the original

dataset size (with 𝑛 = 1, 867, 735). With the high compression effec-

tiveness, we anticipate that the combined versions of COMP, i.e.,

COMPSWS and COMPPREFIX, can achieve better efficiency perfor-

mance compared with the corresponding methods, i.e., SWS and

PREFIX, respectively.

4.3 Efficiency Performance of All Methods
In this section, we examine the efficiency performance of all meth-

ods by conducting the following three experiments. Due to space

limitations, some experiments, e.g., varying the number of times-

tamps and varying the temporal bandwidth, can be found in Sec-

tion 7.5 of Appendix.

Varying the spatial resolution.We test how the spatial resolution

𝑋 × 𝑌 affects the response time of each method. To conduct this

experiment, we choose four resolution sizes, which are 320 × 240,
640 × 480, 1280 × 960, and 2560 × 1920, for generating STKDVs

with respect to all methods. Since the number of blocks |S| is much

smaller than the number of data points 𝑛 (see Figure 8), COMPALG

has small time complexity compared with the corresponding ex-

isting method no matter which ALG (either SWS or PREFIX) we

choose (as TALG ( |S|) << TALG (𝑛) in Theorem 2). As such, observe

from Figure 9 that COMPSWS and COMPPREFIX achieve speedups of

13.94x to 100.98x and speedups of 2.49x to 44.01x compared with

SWS and PREFIX, respectively.

Varying the spatial bandwidth. We examine how the spatial

bandwidth 𝑏𝜎 affects the response time of each method. To conduct

this experiment, we first specify four spatial bandwidth values by

multiplying the default spatial bandwidth with four ratios, which

are 1 (the default one), 2, 4, and 8. Then, we measure the response

time of each method with respect to these spatial bandwidth values

for every dataset. Figure 10 shows the results of all methods. Due to

the smaller number of block size |S| of COMP (see Figure 8) com-

pared with 𝑛, COMPSWS and COMPPREFIX can achieve speedups

of 17.52x to 677.16x and 3.7x to 79.14x compared with SWS and

PREFIX, respectively. In addition, we also note that the larger the

spatial bandwidth 𝑏𝜎 , the smaller the response time of COMPSWS

and COMPPREFIX. The main reason is that 𝜔B is linearly propor-

tional to 𝑏𝜎 (see Theorem 1), which indicates that the block size

𝜔B × 𝜔B × 𝜆B is larger (i.e., the number of blocks |S| is smaller) if

4103



A Fast and Accurate Block Compression Solution for Spatiotemporal Kernel Density Visualization KDD ’25, August 3–7, 2025, Toronto, ON, Canada

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0.01 0.03 0.05 0.07 0.09

N
um

be
r 

of
 b

lo
ck

s

Absolute error

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0.01 0.03 0.05 0.07 0.09

N
um

be
r 

of
 b

lo
ck

s

Absolute error

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

0.01 0.03 0.05 0.07 0.09

N
um

be
r 

of
 b

lo
ck

s

Absolute error

0

1000000

2000000

3000000

4000000

5000000

6000000

0.01 0.03 0.05 0.07 0.09

N
um

be
r 

of
 b

lo
ck

s

Absolute error

(a) Montgomery (b) New York (c) Chicago (d) San Francisco

Figure 8: The number of blocks in S, varying the absolute error 𝜖.
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Figure 9: Response time for computing STKDV, varying the spatial resolution.
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Figure 10: Response time for computing STKDV, varying the spatial bandwidth.
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Figure 11: Response time for computing STKDV, varying the absolute error.

we adopt a larger spatial bandwidth value 𝑏𝜎 . With a small |S|, the
response time is also smaller (see Theorem 2).

Varying the absolute error. We further test how the absolute

error 𝜖 affects the response time of each method by considering

five absolute error values, which are 0.01, 0.03, 0.05, 0.07, and 0.09.

Figure 11 shows the results of all methods. Since all exact methods,

including SWS and PREFIX, do not depend on the absolute error

𝜖 , the response time of these two methods does not change across

this parameter. Once we reduce 𝜖 , we note that the response time

of COMPSWS and COMPPREFIX increases. The main reason is that

both 𝜔B and 𝜆B decrease (according to Theorem 1), which results

in a smaller block size, i.e., a larger number of blocks |S| for COMP.

Despite this, both COMPSWS and COMPPREFIX can still achieve

speedups of 4.1x to 332.48x and 1.45x to 36.32x compared with SWS

and PREFIX, respectively, no matter which 𝜖 we choose.

4.4 Accuracy Performance of All Methods
We further investigate the accuracy performance of all exact

(i.e., SWS and PREFIX) and approximate (i.e., COMPSWS and

COMPPREFIX) methods for generating STKDVs with the default

settings. Due to space limitations, we only test the subjective accu-

racy using the Chicago taxi pick-up location dataset in this section.

Some additional experiments about the objective accuracy for all

datasets can be found in Section 7.5 of Appendix. Figure 12 shows

the STKDV results with four timestamps using the exact (the upper

ones) and approximate (the lower ones) methods. Observe that

there is nearly no difference between the exact STKDV and the

approximate STKDV. The main reason is that COMP can provide

the approximation guarantee between the approximate density

value 𝐴S (q, 𝑡𝑖 ) and the exact density value F𝑃 (q, 𝑡𝑖 ) for each pixel-

timestamp pair (q, 𝑡𝑖 ) (see Definition 2). As a remark, both exact

and approximate STKDV methods can clearly demonstrate how the

4104



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yue Zhong et al.

(a) 10th January 2024 (b) 5th April 2024 (c) 9th July 2024 (d) 22nd October 2024 
Figure 12: Accuracy comparison between the exact method (upper figures) and the approximate method (lower figures) for
generating STKDVs with four timestamps in the Chicago taxi pick-up location dataset.

hotspot changes with respect to different timestamps. For example,

the taxi pick-up location hotspot in the upper part of Chicago is

reduced (with light red color) on 22
nd

October 2024 compared with

the one (with dark red color) on 10
th
January 2024.

5 Related Work
We review two types of research studies, which are closely related

to our work, in this section.

5.1 Efficient Algorithms for Kernel Density
Visualization

In recent decades, many research studies have been proposed for

solving the kernel density visualization (KDV) problem, which aims

to generate a visualization based on computing the following kernel

density function (by ignoring all timestamps and the temporal

kernel function in Equation 1) for each pixel q.

ℱ𝑃 (q) =
1

𝑛

∑︁
p∈𝑃

𝐾space (q, p) (16)

Here, we summarize the representative approaches, including (1)

data indexing, (2) data sampling, and (3) computational sharing.

Data indexing. Observe from Table 1 that only those data points p
with | |q − p| |2 ≤ 𝑏𝜎 can be possibly used for computing ℱ𝑃 (q). As
such, Gray et al. [24] and Gan et al. [23] adopt the kd-tree [10] and

ball-tree [34] to improve the efficiency for evaluating ℱ𝑃 (q). Note
that other types of indexing structures [40] can also be adopted for

improving the efficiency of solving this problem. Recently, Chan

et al. [12, 17, 19] first develop some simple bound functions to

approximate the more complex kernel density function ℱ𝑃 (q) and
incorporate these bound functions into the indexing structures (e.g.,

kd-tree and ball-tree) in order to boost the efficiency of generating

approximate KDV. Although these indexing techniques can improve

the efficiency of generating KDV and can be easily extended for

solving the STKDV problem, Chan et al. [14, 16] verify that they

can provide inferior efficiency performance compared with their

state-of-the-art solutions (i.e., SWS [14] and PREFIX [16]), let alone

to our advanced block compression solution.

Data sampling. In both data mining, database, and theoreti-

cal computer science communities, many data sampling meth-

ods [20, 21, 28, 31, 36–38, 43, 47, 48] have been proposed to boost

the efficiency of generating KDV. However, instead of providing the

deterministic error guarantees (e.g., within a predefined absolute

error with the probability 1), all these methods can only provide the

probabilistic error guarantees (e.g., within a predefined absolute

error with the probability 0.8). Worse still, some of these methods

either suffer from high time-complexity for constructing the data

samples (or coresets) [36, 38] or cannot support those commonly

used kernel functions in Table 1 [31, 43]. In addition, since all these

methods do not focus on the more complex spatiotemporal kernel

density function ℱ𝑃 (q, 𝑡𝑖 ) (see Equation 1), none of these meth-

ods, to the best of our knowledge, can be extended for generating

STKDV with non-trivial accuracy guarantees.

Computational sharing. Recently, Chan et al. [13, 18] propose to

share computations between consecutive pixels [18] and multiple

spatial bandwidth parameters 𝑏𝜎 [13], which can successfully re-

duce the time complexity for generating KDV. Despite this, these

research studies only focus on ℱ𝑃 (q), which ignores the more

complicated spatiotemporal kernel density function ℱ𝑃 (q, 𝑡𝑖 ) (see
Equation 1). Therefore, all these research studies cannot be directly

extended to solve our STKDV problem.

5.2 Efficient Algorithms for Spatiotemporal
Kernel Density Visualization

There are also two representative approaches for solving the more

complicated spatiotemporal kernel density visualization (STKDV)

problem, namely (1) complexity-reduced methods and (2) paral-

lel/distributed methods.

Complexity-reduced methods. Recently, Chan et al. [14, 16] de-

velop two pioneering methods, namely the sliding-window-based

solution (SWS) [14] and the prefix-matrix-based solution (PRE-

FIX) [16], which can successfully reduce the time complexity of

generating exact STKDV to 𝑂 (𝑋𝑌 (𝑇 + 𝑛)) and 𝑂 (𝑋𝑌𝑇 + 𝑌𝑛), re-
spectively. The technical details have been briefly discussed in

Section 2.2. Although the best method, PREFIX, can significantly

improve the efficiency of STKDV, the term 𝑌𝑛 can still be large,

which cannot be scalable to a large 𝑛. By combining COMP with

PREFIX, this integrated solution can achieve the best efficiency

without degrading the visualization quality.
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Parallel/Distributed methods. Some research studies [22, 25, 26,

41] adopt the parallel/distributed methods to improve the efficiency

of generating STKDV. However, all of them only aim to boost

the efficiency of the naïve solution (with 𝑂 (𝑋𝑌𝑇𝑛) time), which

cannot be scalable to large-scale datasets. Recently, Chan et al. [14,

16] also parallelize their PREFIX and SWS, which can boost the

efficiency of their solutions. Despite this, domain experts mainly

adopt contemporary software packages (e.g., ArcGIS, QGIS, and

Scikit-learn) for analyzing their datasets, who may not have many

computational resources to perform parallel/distributed computing.

Therefore, our work does not consider this setting. In addition,

COMP only reduces the size of each dataset, which can combine

with any backbone algorithm (e.g., SWS and PREFIX). As such, these

parallel/distributed methods can also improve the efficiency of our

solution. Besides, incorporating the parallel/distributed methods

into our solution is orthogonal to this work.

6 Conclusion
We study the spatiotemporal kernel density visualization problem,

which is regarded to be the inefficient visualization/data analysis

tool in many domains of geospatial analysis. Although many recent

algorithms, including SWS [14] and PREFIX [16], have been pro-

posed to tackle the efficiency issues for generating STKDV, these

algorithms cannot be scalable to handle large location datasets

(with large 𝑛). In this paper, we observe that many data points are

spatiotemporally close to each other. Based on this observation,

we propose the pioneering block compression solution (COMP) for

this problem, which can significantly compress (or represent) each

location dataset by a small amount of blocks, without theoretically

incurring large error for generating approximate STKDV. By com-

bining COMP with the existing methods, our experimental results

verify that COMPSWS and COMPPREFIX can achieve speedups of 4.1x

to 677.16x and 1.45x to 143.52x compared with SWS and PREFIX,

respectively, without degrading the visualization results.

In the future, we plan to investigate how to extend this block

compression solution to other geospatial analysis tasks, including

𝐾-function [4] and inverse distance weighted interpolation [3].

Furthermore, we will develop a python library, an R package, and

a QGIS/ArcGIS plugin based on COMP to support efficient and

accurate STKDV.
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7 Appendix
7.1 Proof of Lemma 1

Proof. Consider the expression |𝐴S (q, 𝑡𝑖 ) −ℱ𝑃 (q, 𝑡𝑖 ) |. We have

|𝐴S (q, 𝑡𝑖 ) −ℱ𝑃 (q, 𝑡𝑖 ) |

=
1

𝑛

��� ∑︁
B∈S

C(B) · 𝐾space (q, pB ) · 𝐾time (𝑡𝑖 , 𝑡pB )

−
∑︁
B∈S

∑︁
(p,𝑡p ) ∈B

𝐾space (q, p) · 𝐾time (𝑡𝑖 , 𝑡p )
���

=
1

𝑛

��� ∑︁
B∈S

∑︁
(p,𝑡p ) ∈B

(𝐾space (q, pB )𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾space (q, p)𝐾time (𝑡𝑖 , 𝑡p ) )
���

≤ 1

𝑛

∑︁
B∈S

∑︁
(p,𝑡p ) ∈B

���𝐾space (q, pB )𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾space (q, p)𝐾time (𝑡𝑖 , 𝑡p )
���

Therefore, if |𝐾space (q, pB )𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾space (q, p)𝐾time (𝑡𝑖 , 𝑡p ) | ≤ 𝜖 ,
we can conclude that

|𝐴S (q, 𝑡𝑖 ) −ℱ𝑃 (q, 𝑡𝑖 ) | ≤
1

𝑛

∑︁
B∈S

∑︁
(p,𝑡p ) ∈B

𝜖 = 𝜖

□

7.2 Proof of Lemma 2
Proof. In order to prove this lemma, we consider three cases,

which are (1) 𝑥1 < 𝑥2 ≤ 𝑏, (2) 𝑥1 ≤ 𝑏 < 𝑥2, and (3) 𝑏 < 𝑥1 < 𝑥2.

Case 1 (𝑥1 < 𝑥2 ≤ 𝑏): In this case, both (𝑥1,K(𝑥1)) and (𝑥2,K(𝑥2))
are on the polynomial (and differentiable) curve

(
e.g.,

3

4

(
1 − 𝑥2

𝑏2

)
in

Figure 7

)
. Therefore, based on the mean value theorem [44], there

exist a value 𝜁 , where 𝑥1 ≤ 𝜁 ≤ 𝑥2, so that

K(𝑥1) − K(𝑥2)
𝑥1 − 𝑥2

=
𝑑K(𝑥)
𝑑𝑥

���
𝑥=𝜁

Hence, we have���K(𝑥1) − K(𝑥2)
𝑥1 − 𝑥2

��� = ���𝑑K(𝑥)
𝑑𝑥

���
𝑥=𝜁

��� ≤𝑚max

Case 2 (𝑥1 ≤ 𝑏 < 𝑥2): In this case, we haveK(𝑥2) = 0 and |𝑥1−𝑏 | ≤
|𝑥1 − 𝑥2 |. Therefore, we can conclude that���K(𝑥1) − K(𝑥2)

𝑥1 − 𝑥2

��� ≤ ���K(𝑥1)
𝑥1 − 𝑏

���
Moreover, since the data points (𝑥1,K(𝑥1)) and (𝑏, 0) are on the

polynomial (and differentiable) curve (see Figure 7 as an example),

we adopt the mean value theorem [44] to show that we have (where

𝑥1 ≤ 𝜁 ≤ 𝑏)
K(𝑥1)
𝑥1 − 𝑏

=
𝑑K(𝑥)
𝑑𝑥

���
𝑥=𝜁

Based on the above two equations, we conclude that���K(𝑥1) − K(𝑥2)
𝑥1 − 𝑥2

��� ≤ ���𝑑K(𝑥)
𝑑𝑥

���
𝑥=𝜁

��� ≤𝑚max

Case 3 (𝑏 < 𝑥1 < 𝑥2): Note that K(𝑥1) = K(𝑥2) = 0 in this case.

Therefore, we have���K(𝑥1) − K(𝑥2)
𝑥1 − 𝑥2

��� = 0 ≤𝑚max

□

7.3 Derivation of𝑚 (𝜎 )
max

and𝑚 (𝜏 )
max

for Different
Kernel Functions

Here, we only focus on the derivation of 𝑚
(𝜎 )
max

. We can simply

replace 𝑏𝜎 by 𝑏𝜏 to obtain𝑚
(𝜏 )
max

.

ConsiderK(𝑥) for the triangular spatial kernel (see Table 1). We

have

K(𝑥) =
{
1 − 𝑥

𝑏𝜎
if 𝑥 ≤ 𝑏𝜎

0 otherwise

=⇒ 𝑑K(𝑥)
𝑑𝑥

=

{
− 1

𝑏𝜎
if 𝑥 ≤ 𝑏𝜎

0 otherwise

Hence, we can conclude that𝑚
(𝜎 )
max

= 1

𝑏𝜎
.

ConsiderK(𝑥) for the Epanechnikov spatial kernel (see Table 1).
We have

K(𝑥) = 3

4

·
{
1 − 𝑥2

𝑏2𝜎
if 𝑥 ≤ 𝑏𝜎

0 otherwise

=⇒ 𝑑K(𝑥)
𝑑𝑥

=

{
− 3𝑥

2𝑏2𝜎
if 𝑥 ≤ 𝑏𝜎

0 otherwise

Hence, we can conclude that𝑚
(𝜎 )
max

= 3

2𝑏𝜎
.

Consider K(𝑥) for the quartic spatial kernel (see Table 1). We

have

K(𝑥) = 15

16

·
{(
1 − 𝑥2

𝑏2𝜎

)
2

if 𝑥 ≤ 𝑏𝜎
0 otherwise

=⇒ 𝑑K(𝑥)
𝑑𝑥

=

{
− 15

4

(
𝑥

𝑏2𝜎
− 𝑥3

𝑏4𝜎

)
if 𝑥 ≤ 𝑏𝜎

0 otherwise

Hence, we can conclude that𝑚
(𝜎 )
max

=
5

√
3

6𝑏𝜎
.
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7.4 Proof of Lemma 3
Proof. To prove the bound in Equation 12, we let 𝑥1 = | |q−pB | |2,

𝑥2 = | |q − p| |2, and 𝑚max = 𝑚
(𝜎 )
max

. Then, based on Lemma 2, we

have

|𝐾space (q, pB) − 𝐾space (q, p) | ≤ 𝑚 (𝜎 )max
| | |q − pB | |2 − ||q − p| |2 |

≤ 𝑚 (𝜎 )
max
| |p − pB | |2

The last inequality is based on the triangle inequality. Observe from

Figure 6 that each black sphere (p, 𝑡p) must be within the block B.

Therefore, we also have | |p − pB | |2 ≤
√︃(𝜔B

2

)
2 +

(𝜔B
2

)
2

=

√
2·𝜔B
2

.

Based on these two inequalities, we conclude that

|𝐾space (q, pB) − 𝐾space (q, p) | ≤
√
2 · 𝜔B ·𝑚 (𝜎 )max

2

To prove the bound in Equation 13, we let 𝑥1 = |𝑡𝑖 − 𝑡pB |, 𝑥2 =
|𝑡𝑖 − 𝑡p |, and 𝑚max = 𝑚

(𝜏 )
max

. Based on Lemma 2 and the triangle

inequality, we have

|𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾time (𝑡𝑖 , 𝑡p) | ≤ 𝑚 (𝜏 )max
| |𝑡𝑖 − 𝑡pB | − |𝑡𝑖 − 𝑡p | |

≤ 𝑚 (𝜏 )
max
|𝑡p − 𝑡pB |

In Figure 6, observe that every black sphere (p, 𝑡p) must be within

the temporal distance
𝜆B
2
from the red sphere (pB, 𝑡pB ), i.e., |𝑡p −

𝑡pB | ≤
𝜆B
2
. Therefore, we conclude that

|𝐾time (𝑡𝑖 , 𝑡pB ) − 𝐾time (𝑡𝑖 , 𝑡p) | ≤
𝜆B ·𝑚 (𝜏 )max

2

□

7.5 Additional Experiments
In this section, we provide those experiments that have not been

presented in the main content, including (1) additional efficiency

experiments of all methods, (2) other kernels, and (3) objective

accuracy of all methods.

7.5.1 Additional Efficiency Experiments of All Methods. We further

conduct these two additional experiments for testing the efficiency

of all methods.

Varying the number of timestamps. We investigate how the

number of timestamps 𝑇 affects the response time of each method

by choosing the number of timestamps from 8 to 64. Figure 13

shows the results of all methods. With the smaller number of blocks

|S| of COMP (see Figure 8), both COMPSWS and COMPPREFIX can

achieve speedups of up to 105.14x and 45.97x compared with the

corresponding methods, SWS and PREFIX, respectively, no matter

which 𝑇 we adopt.

Varying the temporal bandwidth.We proceed to investigate how

the temporal bandwidth𝑏𝜏 affects the response time of eachmethod.

Note that this experiment is similar to the one for varying the spatial

bandwidth. Instead, we multiply the default temporal bandwidth

with four ratios, i.e., 1 (the default one), 2, 4, and 8, in order to obtain

the four temporal bandwidths for testing. Observe from Figure 14

that COMPSWS and COMPPREFIX can normally achieve speedups

of 17.53x to 603.78x and 3.15x to 138.06x compared with SWS and

PREFIX, respectively. In addition, the larger the temporal bandwidth

𝑏𝜏 , the larger the 𝜆B value (see Theorem 1), which indicates that

COMP produces larger blocks (i.e., produces the smaller number

of blocks |S|). Based on Theorem 2, COMPSWS and COMPPREFIX

can achieve the smaller response time if we adopt a larger 𝑏𝜏 (see

Figure 14).

7.5.2 Other Kernels. Here, we conduct the following experiments

to test the efficiency of all methods using the triangular kernel

and the quartic kernel. As a remark, we only consider SWS and

COMPSWS for testing the triangular kernel since the PREFIXmethod

cannot support this kernel function.

Varying the spatial bandwidth. In this experiment, we follow

the same settings as in Section 4.3 for testing the efficiency of all

methods with respect to different spatial bandwidths. Figure 15

shows the results of all methods. Like the results in Figure 10a and

Figure 10b, the response time of COMPSWS and COMPPREFIX (only

for the quartic kernel) is reduced when we adopt the large spatial

bandwidth value 𝑏𝜎 . The main reason is that the number of blocks

|S| of COMP is small (i.e., 𝜔B becomes large) if we have a large

𝑏𝜎 (see Theorem 1), which indicates that COMPALG can provide

fast performance for any exact algorithm ALG (see Theorem 2)

no matter which kernel function we choose. Note that COMP can

significantly improve the performance for generating STKDV. Re-

garding the triangular kernel, COMPSWS can achieve speedups of

20.03x to 528.41x compared with SWS. Regarding the quartic kernel,

COMPSWS and COMPPREFIX can achieve speedups of 10x to 271.53x

and 3.22x to 54.87x compared with SWS and PREFIX, respectively.

Varying the temporal bandwidth. To conduct this experiment,

we also follow the same settings as in Section 7.5.1 for testing the

efficiency of all methods with respect to different temporal band-

widths. Figure 16 shows the results of all methods. Observe that

COMPSWS achieves speedups of 20.03x to 237.25x compared with

SWS in the triangular kernel, while COMPSWS and COMPPREFIX

achieve speedups of 10x to 356.98x and 3.22x to 143.52x compared

with SWS and PREFIX, respectively. The main reason is that COMP

can achieve the small number of blocks |S| compared with the

dataset size 𝑛, which results in the small time complexity (see The-

orem 2).

7.5.3 Objective Accuracy of All Methods. Although we have per-

formed an experiment to test the subjective accuracy of all methods

in Section 4.4, we still do not know the objective accuracy of these

methods. To conduct this experiment, we utilize the following mea-

sure, which represents the maximum density deviation between an

exact STKDV and an approximate STKDV, to obtain the practical

maximum error (𝑃𝑀𝐸) of the approximate method.

𝑃𝑀𝐸 = max

∀(q,𝑡𝑖 )
|𝐴S (q, 𝑡𝑖 ) − F𝑃 (q, 𝑡𝑖 ) | (17)

Figure 17 shows the results of the approximate method in all

datasets. Observe that the 𝑃𝑀𝐸 values are normally in the range of

[10−5, 10−3], which can be much smaller compared with the abso-

lute error 𝜖 . Therefore, this further explains why the approximate

method does not degrade the STKDV result compared with the one

that is generated by the exact method in the Chicago taxi pick-up

location dataset (see Figure 12).
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Figure 13: Response time for computing STKDV, varying the number of timestamps.
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Figure 14: Response time for computing STKDV, varying the temporal bandwidth.
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Figure 15: Response time for computing STKDV in theMontgomery (a and c) and New York (b and d) datasets with the triangular
kernel (a and b) and the quartic kernel (c and d), varying the spatial bandwidth.
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Figure 16: Response time for computing STKDV in theMontgomery (a and c) and New York (b and d) datasets with the triangular
kernel (a and b) and the quartic kernel (c and d), varying the temporal bandwidth.
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Figure 17: Accuracy (practical maximum error) of the approximate method for computing STKDV, varying the absolute error.
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