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Abstract
Attributed bipartite graphs (ABGs) are an expressive data model

for describing the interactions between two sets of heterogeneous

nodes that are associated with rich attributes, such as customer-

product purchase networks and author-paper authorship graphs.

Partitioning the target node set in such graphs into 𝑘 disjoint clus-

ters (referred to as 𝑘-ABGC) finds widespread use in various do-

mains, including social network analysis, recommendation systems,

information retrieval, and bioinformatics. However, the majority

of existing solutions towards 𝑘-ABGC either overlook attribute

information or fail to capture bipartite graph structures accurately,

engendering severely compromised result quality. The severity of

these issues are accentuated in real ABGs, which often encompass

millions of nodes and a sheer volume of attribute data, rendering

effective 𝑘-ABGC over such graphs highly challenging.

In this paper, we propose TPO, an effective and efficient approach

to 𝑘-ABGC that achieves superb clustering performance onmultiple

real datasets. TPO obtains high clustering quality through two major

contributions: (i) a novel formulation and transformation of the 𝑘-

ABGC problem based onmulti-scale attribute affinity specialized for
capturing attribute affinities between nodes with the consideration

of their multi-hop connections in ABGs, and (ii) a highly efficient

solver that includes a suite of carefully-crafted optimizations for

sidestepping explicit affinity matrix construction and facilitating

faster convergence. Extensive experiments, comparing TPO against

19 baselines over 5 real ABGs, showcase the superior clustering

quality of TPO measured against ground-truth labels. Moreover,

compared to the state of the arts, TPO is often more than 40× faster

over both small and large ABGs.

CCS Concepts
• Mathematics of computing → Computations on matrices; •
Computingmethodologies→Cluster analysis; Spectralmeth-
ods; • Information systems→ Clustering.
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1 Introduction
Bipartite graphs are an indispensable data structure used to model

the interplay between two sets of entities from heterogeneous

sources, e.g., author-publication associations, customer-merchant

transactions, query-webpage pairing, and various user-item interac-

tions on social media, e-commerce platforms, search engines, etc. In

the real world, such graphs are often associated with rich attributes,

e.g., the user profile in social networks, web page content in web

graphs, hallmarks of pathways in cancer signaling networks, and

paper keywords in academic graphs, which are termed Attributed
Bipartite Graphs (hereinafter ABGs).

Given an ABG G with two disjoint node sets U and V , 𝑘-

Attributed Bipartite Graph Clustering (𝑘-ABGC), a fundamental task

of analyzing ABGs, seeks to partition the nodes in the node set of in-

terest, e.g.,U orV , into 𝑘 non-overlapping clusters C1, C2, · · · , C𝑘 ,
such that nodes within the same cluster C𝑖 are close to each other

in terms of both their attribute similarity and topological prox-

imity in G. Due to the omnipresence of ABGs, 𝑘-ABGC has seen

a wide range of practical applications in social network analy-

sis, recommender systems, information retrieval, and bioinformat-

ics, such as user/content tagging [45, 81], market basket analysis

[83, 84], document categorization [8, 59], identification of protein

complexes, disease genes, and drug targets [46, 64], and many oth-

ers [26, 34, 50, 67, 69].

As reviewed in Section 5, existing solutions towards 𝑘-ABGC

primarily rely on bipartite graph co-clustering (BGCC), attributed
graph clustering (AGC), and attributed network embedding (ANE)
techniques. Amid them, BGCC has been extensively investigated

in the literature [2, 8, 9, 28, 29, 63] for clustering non-attributed

bipartite graphs, whose basic idea is to simultaneously group nodes

in U and V merely based on their interactions in G, instead of

clustering them severally. As pinpointed in prior works [4], the

attributes present rich information to characterize the properties

of nodes and hence, can complement scant topological information

for better node clustering. Consequently, BGCC methods exhibit
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subpar performance on ABGs as they overlook such information.

To leverage the complementary nature of graph topology and

attributes for enhanced clustering effectiveness, considerable efforts

[4, 6, 12, 30, 77, 85] have been invested in recent years towards

devising effective AGC models and algorithms. Although these

approaches enjoy improved performance over unipartite attributed
graphs by fusing graph connectivity and attribute information of

nodes via deep learning or sophisticated statistical models, they are

sub-optimal for ABGs.

Over the past decade, network embedding has emerged as a

popular and powerful tool for analyzing graph-structured data, es-

pecially those with nodal attributes. Notwithstanding a plethora of

network embedding techniques invented [7, 14, 75], most of them

are designed for unipartite graphs. To capture the unique character-

istics of bipartite graphs, Huang et al. [23] extend node2vec [18] to
ABGs, at the expense of tremendous training overhead. Adopting

this category of approaches for 𝑘-ABGC requires a rear-mounted

phase (e.g., 𝑘-Means) to cluster the node embeddings, which is

not cost-effective given the high embedding dimensions (typically

128). To summarize, existing approaches to 𝑘-ABGC either dilute

clustering quality due to inadequate exploitation of attributes and

bipartite graph topology, or incur vast computation costs, especially

on sizable ABGs encompassing thousands of attributes, millions of

nodes, and billions of edges.

In response to these challenges, we propose TPO, a novel Three-
Phase Optimization framework for 𝑘-ABGC that significantly ad-

vances the state of the art in 𝑘-ABGC, in terms of both result ef-

fectiveness and computation efficiency. First and foremost, TPO
formulates the 𝑘-ABGC task as an optimization problem based on

multi-scale attribute affinity (MSA), a new node affinity measure

dedicated to ABGs. More concretely, the MSA of two homoge-

neous nodes 𝑢𝑖 , 𝑢 𝑗 inU of ABG G evaluates the similarity of their

attributes aggregated from multi-hop neighborhoods, which effec-

tively captures the affinity of nodes with consideration of both their

attributes and topological connections in bipartite graphs. How-

ever, calculating the MSA of all node pairs in G for clustering is

prohibitively expensive for large graphs, as it entails colossal con-

struction time and space consumption (𝑂 ( |U|2)). On top of that,

the exact optimization of our 𝑘-ABGC objective is also infeasible

as an aftermath of its NP-hardness.

To tackle these issues, TPO adopts a three-phase optimization

scheme for an approximate solution with time and space costs lin-

ear to the size of G. Under the hood, similar in spirit to kernel tricks

[36], TPO first leverages a mathematical apparatus, random features
[49, 82], to bypass the materialization of the all-pairwise MSA. The

clustering task is later framed as a non-negative matrix factoriza-

tion, followed by a matrix approximation problem, based on our

theoretically-grounded problem transformation. Particularly, the

former attends to yielding an intermediate, while the latter itera-

tively refines the intermediary result to derive the eventual clusters.

In addition to the linear-time iterative solvers, TPO further includes

a greedy initialization trick for speeding up the convergence, and

an attribute dimension reduction approach to conspicuously boost

the practical efficiency of TPO over graphs with large attribute sets,

without degrading result quality. Our empirical studies, which in-

volved 5 real ABGs and compared against 19 existing algorithms,

demonstrate that TPO consistently attains superior or comparable

Table 1: Frequently used notations.

Notation Description
U,V, E The node sets U,V , and the edge set E of ABG G.
XU ,XV Attribute vectors of nodes in U and V .

𝑑U , 𝑑V Attribute dimensions of nodes in U and V .

𝑤 (𝑢𝑖 , 𝑣𝑗 ) Weight of edge (𝑢𝑖 , 𝑣𝑗 ) in E.
𝑘 The number of clusters.

𝛼 Balance coefficient used in Eq. (3).

𝛾 Maximum number of iterations used in Eq. (31).

𝑑 Dimension of X′U in Eq. (15) (𝑑 ≤ 𝑑U ).
𝑇𝑓 ,𝑇𝑔 Maximum number of iterations used in Algorithms 2

and 3, respectively.

LU Normalized adjacency matrix defined in Eq. (7).

ZU , ẐU Feature vectors of nodes in U and their normalized

version defined in Eq. (6) and Eq. (2), respectively.

𝑠 (𝑢𝑖 ,𝑢 𝑗 ) The MSA between nodes 𝑢𝑖 and 𝑢 𝑗 defined in Eq. (1).

R Matrix satisfies R[𝑖 ] · R[ 𝑗 ] ≈ 𝑠 (𝑢𝑖 ,𝑢 𝑗 ) .
Y The NCI matrix defined in Eq. (10).

𝚼 The continuous version of Y satisfying Eq. (11).

clustering quality at a fraction of the cost compared to the state-of-

the-art methods. For instance, on the largest Amazon dataset with

over 10 million nodes and 22 million edges, TPO obtains the best

clustering accuracy within 3 minutes, whereas the state-of-the-art

demands more than 4 hours to terminate.

2 Problem Formulation
2.1 Notation and Terminology
We denote matrices using bold uppercase letters, e.g., M ∈ R𝑛×𝑑

,

and the 𝑖-th row (resp. the 𝑗-th column) ofM is represented asM[𝑖]
(resp. M[:, 𝑗]). Accordingly, M[𝑖, 𝑗] signifies the entry at the 𝑖-th

row and 𝑗-th column ofM. For each vectorM[𝑖], we use ∥M[𝑖] ∥ to
represent its 𝐿2 norm and ∥M∥𝐹 to represent the Frobenius norm

ofM.

Let G = (U ∪V, E,XU ,XV ) symbolize an attributed bipartite
graph (ABG), where E is composed of edges connecting nodes in

two disjoint node setsU andV and each edge (𝑢𝑖 , 𝑣 𝑗 ) is associated
with an edge weight𝑤 (𝑢𝑖 , 𝑣 𝑗 ). Each node 𝑢𝑖 ∈ U (resp. 𝑣𝑖 ∈ V) of

G is characterized by a length-𝑑U (resp. length-𝑑V ) attribute vec-

tor XU [𝑖] (resp. XV [𝑖]). Further, we denote by BU ∈ R |U |× |V |

the adjacency matrix of G from the perspective of U, in which

BU [𝑖, 𝑗] = 𝑤 (𝑢𝑖 , 𝑣 𝑗 ) if (𝑢𝑖 , 𝑣 𝑗 ) ∈ E and 0 otherwise. Let DU (resp.

DV ) be a |U| × |U| (resp. |V| × |V|) diagonal matrix wherein the

diagonal entry DU [𝑖, 𝑖] (resp. DV [𝑖, 𝑖]) stands for the sum of the

weights of edges incident to 𝑢𝑖 (resp. 𝑣𝑖 ), i.e.,
∑
(𝑢𝑖 ,𝑣ℓ ) ∈E 𝑤 (𝑢𝑖 , 𝑣ℓ )

(resp.

∑
(𝑢ℓ ,𝑣𝑖 ) ∈E 𝑤 (𝑢ℓ , 𝑣𝑖 )). Table 1 lists the frequently used nota-

tions throughout the paper.

The overarching goal of 𝑘-ABGC is formalized in Definition 2.1

and exemplified in Figure 1. Note that by default, we regardU as

the target node set to cluster. The number 𝑘 can be specified by

users or configured by a preliminary procedure [41].

Definition 2.1 (𝑘-Attributed Bipartite Graph Clustering (𝑘-ABGC)).
Given an ABG G, the target node setU, and the number 𝑘 of clus-

ters, 𝑘-ABGC aims to partition node setU into 𝑘 disjoint clusters

{C1, C2, · · · , C𝑘 } such that nodes within the same cluster are close

to each other in terms of both topological proximity and attribute
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𝒞1 𝒞2 𝒞3

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8

𝒰

𝒱

ℰ

𝐗𝒰

Figure 1: An Illustrative Example of 𝑘-ABGC

similarity while nodes across diverse clusters are distant.

2.2 Multi-Scale Attribute Affinity (MSA)
Notice that Definition 2.1 cannot directly guide the generation of

clusters, as it lacks a concrete optimization objective that quantifies

node affinities. To this end, we first delineate our novel affinity mea-

sure MSA for nodes in terms of both graph structure and attributes,

before formally introducing our objective in Section 2.3.

MSA formulation. We first assume that each node 𝑢𝑖 ∈ U can be

represented by a feature vector ZU [𝑖], which characterizes both

the attributes as well as the rich semantics hidden in the bipartite

graph topology. Following the popular Skip-gram model [40] and

its extension to graphs [18, 47], we can model pair-wise affinity of

nodes as a softmax unit [16] parametrized by a dot product of their

feature vectors. Rather than using the vanilla softmax function,

we adopt a symmetric softmax function and formulate the MSA

𝑠 (𝑢𝑖 , 𝑢 𝑗 ) between any two nodes 𝑢𝑖 , 𝑢 𝑗 inU as follows:

𝑠 (𝑢𝑖 ,𝑢 𝑗 ) =
𝑒 ẐU [𝑖 ] ·ẐU [ 𝑗 ]√︃∑

𝑢ℓ ∈U 𝑒ẐU [𝑖 ] ·ẐU [ℓ ] ·
√︃∑

𝑢ℓ ∈U 𝑒 ẐU [ 𝑗 ] ·ẐU [ℓ ]
, (1)

where ẐU is a normalized ZU whose each 𝑖-th row satisfies

ẐU [𝑖 ] = ZU [𝑖 ]/∥ZU [𝑖 ] ∥ . (2)

MSA 𝑠 (𝑢𝑖 , 𝑢 𝑗 ) is symmetric, i.e., 𝑠 (𝑢𝑖 , 𝑢 𝑗 ) = 𝑠 (𝑢 𝑗 , 𝑢𝑖 ) ∀𝑢𝑖 , 𝑢 𝑗 ∈ U.

Additionally, by imposing a normalization,−1 ≤ ẐU [𝑖] ·ẐU [ 𝑗] ≤ 1

∀𝑢𝑖 , 𝑢 𝑗 ∈ U, and hence, the MSA values w.r.t. any node 𝑢𝑖 ∈ U are

scaled to a similar range.

Optimization Objective for ZU . Next, we focus on the obtain-

ment of the feature vector ẐU [𝑖] for each node 𝑢𝑖 ∈ U. A favor-

able choice might be graph neural networks (GNNs) [27], which,

however, cannot be readily applied to ABGs as existing GNNs are

primarily designed for general graphs, and it is rather costly to

train classic GNNs. As demystified by recent studies [38, 70, 89],

many popular GNNs models can be unified into an optimization

framework from the perspective of numeric optimization, which

essentially produces node feature vectors being smooth on nearby

nodes in terms of the underlying graph. Inspired by this finding,

we extend this optimization framework to ABGs. More specifically,

its objective is as follows:

min

ZU
(1 − 𝛼) · O𝑎 + 𝛼 · O𝑔, (3)

which includes a non-negative coefficient 𝛼 ∈ [0, 1] and two terms:

(i) a fitting term O𝑎 in Eq. (4) aiming at ensuring ZU is close to the

input attribute vectors XU ,
O𝑎 = ∥ZU − XU ∥2𝐹 (4)

and (ii) a regularization term O𝑔 in Eq. (5) constraining the feature

vectors of two nodes with high connectivity to be similar.

O𝑔 =
1

2

∑︁
𝑢𝑖 ,𝑢 𝑗 ∈U

𝑤 (𝑢𝑖 ,𝑢 𝑗 ) ·
 ZU [𝑖 ]√︁

DU [𝑖, 𝑖 ]
− ZU [ 𝑗 ]√︁

DU [ 𝑗, 𝑗 ]

2 (5)

The regularization term requires scaling ZU [𝑖] of each node 𝑢𝑖

in Eq. (5) with a factor 1/
√︁
DU [𝑖, 𝑖] to avoid distorting the values

in ZU [𝑖] when 𝑢𝑖 connects to massive or scant links. The weight

𝑤 (𝑢𝑖 , 𝑢 𝑗 ) in Eq. (5) is defined by

𝑤 (𝑢𝑖 ,𝑢 𝑗 ) =
∑︁

𝑣ℓ ∈N(𝑢𝑖 )∩N(𝑢 𝑗 )

𝑤 (𝑢𝑖 , 𝑣ℓ ) · 𝑤 (𝑣ℓ ,𝑢 𝑗 )
DV [ℓ, ℓ ]

,

which reflects the strength of connections between two homoge-

neous nodes 𝑢𝑖 and 𝑢 𝑗 in U (e.g., researchers) via their common

neighbors in the counterpartyV (e.g., co-authored papers). As an

example for illustration, consider researchers 𝑢3, 𝑢4 in Figure 1,

𝑤 (𝑢3, 𝑢4) = 1

3
+ 1

2
+ 1

4
, where the denominators 3, 2, and 4 corre-

spond to the numbers of authors in papers 𝑣3, 𝑣4 and 𝑣5. Accordingly,

𝑤 (𝑢3, 𝑢4) evaluates the overall contributions of 𝑢3, 𝑢4 to their col-

laborated research works inV . Thus, the O𝑔 term in Eq. (3) is to

minimize the distance of feature vectors of researchers who have

extensively collaborated with each other with high contributions.

The hyper-parameter 𝛼 balances the attribute and topology in-

formation encoded into ZU . In particular, when 𝛼 = 0, feature

vectors ZU = XU , and at the other extreme, i.e., 𝛼 = 1, ZU is

entirely dependent on the topology of G.
Closed-form Solution of ZU . Given an 𝛼 , Lemma 2.2

1
indicates

that the optimal feature vectors ZU to Eq. (3) can be computed via

iterative sparsematrixmultiplications in Eq. (6) without undergoing

expensive training.

Lemma 2.2. When 𝛾 →∞, ZU in Eq. (6) is the closed-form solu-
tion to the optimization problem in Eq. (3).

ZU = (1 − 𝛼 )
𝛾∑︁
𝑟=0

𝛼𝑟 ·
(
LUL⊤U

)𝑟
XU , (6)

where LU is a normalized version of adjacency matrix BU , i.e.,

LU = D
− 1

2

U BUD
− 1

2

V . (7)

In practice, we set 𝛾 in Eq. (6) to a finite number (typically 5) for

efficiency. Intuitively, the computation of ZU essentially aggregates

attributes from other homogeneous nodes as per their multi-scale

proximities (e.g., the strength of connections via multiple hops (at

most 𝛾 hops)) in G. As such, the feature vectors of nodes with

numerous direct or indirect linkages will be more likely to be close,

yielding a high MSA in Eq. (1).

2.3 Objective Function
Based on the foregoing definitions of 𝑘-ABGC and MSA, we formu-

late the problem of 𝑘-ABGC as the following objective function:

min

C1,C2,· · · ,C𝑘

𝑘∑︁
ℓ=1

1

| Cℓ |
∑︁

𝑢𝑖 ∈Cℓ ,𝑢 𝑗 ∈U\Cℓ
𝑠 (𝑢𝑖 ,𝑢 𝑗 ), (8)

More precisely, Eq. (8) is to identify𝑘 disjoint clustersC1, C2, · · · , C𝑘
inU such that the average MSA of two nodes in different clusters

is low. Meanwhile, with this optimization objective, the average

1
All proofs appear in Appendix A.
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MSA of any two nodes in the same cluster will be maximized; in

other words, nodes within the same cluster are tight-knit.

According to [52], Eq. (8) is an NP-complete combinatorial op-

timization problem. Hence, the exact solution to Eq. (8) is compu-

tationally infeasible when U contains a large number of nodes.

Moreover, the direct optimization of Eq. (8) demands materializing

𝑠 (𝑢𝑖 , 𝑢 𝑗 ) of every node pairs inU×U. As such, deriving an approx-

imate solution by optimizing Eq. (8) with even a handful of epochs

entails an 𝑂 ( |E | · |U| · 𝑑U ) computational cost and a quadratic

space overhead𝑂 ( |U|2), rendering it incompetent for large ABGs.

3 The TPO Algorithm
To address the above-said challenges, this section presents our

Three-Phase Optimization framework (TPO) to 𝑘-ABGC computation

based on Eq. (8) without explicitly constructing the MSA matrix.

3.1 Synoptic Overview
At a high level, TPO draws inspiration from the equivalence between

the optimization objectives in Eq. (8) and Eq. (9), as Lemma 3.1.

Lemma 3.1. Eq. (8) is equivalent to the following objective:
min

Y≥0,H≥0
∥R − YH⊤∥2𝐹 s.t. Y is an NCI matrix. (9)

Specifically, if we can identify a matrix R such that R[𝑖] · R[ 𝑗] =
𝑠 (𝑢𝑖 , 𝑢 𝑗 ) ∀𝑢𝑖 .𝑢 𝑗 ∈ U, the computation of 𝑘 non-overlapping clus-

ters C1, C2, · · · , C𝑘 towards optimizing Eq. (8) is equivalent to

decomposing R into two non-negative matrices Y and H, where Y
represents a normalized cluster indicator (NCI) matrix Y ∈ R |U |×𝑘 ,
as defined in Eq. (10).

Y[𝑖, ℓ] =


1√
| Cℓ |

if 𝑢𝑖 belongs to in cluster Cℓ ,

0 otherwise.
(10)

According to Eq. (10), for each node 𝑢𝑖 ∈ U, its corresponding

vector Y[𝑖] in the NCI matrix comprises solely one non-zero entry

Y[𝑖, ℓ] indicating the clustering membership of 𝑢𝑖 , and the value

should be 1/
√︁
|Cℓ |. This characteristic ensures that Y is column-

orthogonal, i.e., Y⊤Y = I. However, this constraint on Y renders the

factorization of R hard to converge. Instead of directly computing

the exact Y, we employ a two-step approximation strategy. More

specifically, TPO first builds a |U|×𝑘 matrix 𝚼 (a continuous version

of Y) which minimizes the factorization loss in Eq. (11):

min

𝚼≥0,H≥0
∥R − 𝚼H⊤∥2𝐹 s.t. 𝚼

⊤
𝚼 = I, (11)

in which the constraint on Y in Eq. (9) is relaxed to be 𝚼 ≥ 0 and

𝚼
⊤
𝚼 = I. Afterward, the task is to transform 𝚼 into an NCI matrix

Y by minimizing their difference about Eq. (9).

As outlined in Figure 2, given an ABG G, the number of 𝑘 of

clusters, and the node setU to be partitioned as input, TPO outputs
an approximate solution to the 𝑘-ABGC problem in Eq. (8) through

three phases: (i) constructing a low-dimensional matrix R such that

R[𝑖] · R[ 𝑗] ≈ 𝑠 (𝑢𝑖 , 𝑢 𝑗 ) ∀𝑢𝑖 .𝑢 𝑗 ∈ U without explicitly materializing

the MSA of all node pairs (Algorithm 1, Section 3.2); (ii) factorizing

R as per Eq. (11) to create aU×𝑘 non-negative column-orthogonal

matrix 𝚼 (Algorithm 2, Section 3.3); and (iii) effectively converting

𝚼 into an NCI Y (Algorithm 3, Section 3.4). In what follows, we

elaborate on the algorithmic details of these three subroutines. Due

to space limit, we defer the complexity analysis of them and TPO to

(i) MSA Approximation (Algorithm 1)

(ii) Greedy Orthogonal NMF

(iii) NCI Generation (Algorithm 3)

≈
∙

(Algorithm 2)
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Figure 2: Overview of TPO

our technical report [78].

3.2 MSA Approximation via Random Features
Algorithm 1 illustrates the pseudo-code of linearizing the approxi-

mate computation of MSA in Eq. (1) as the matrix product R · R⊤
with matrix R. The fundamental idea is to leverage and tweak the

random features [49, 82] technique designed for approximating the

Gaussian kernel 𝑒−∥x−y∥
2/2

of any vectors x and y.
After taking as input the ABGG and parameters𝛼,𝛾 , Algorithm 1

begins by calculating LU according to Eq. (7) and initializing ZU
as 𝛼XU (Lines 1-2). At Lines 3-4, we update ZU via 𝛾 iterations of

the following matrix multiplication:

ZU ← 𝛼 · (XU + LU · (L⊤UZU )). (12)

Particularly, we structure the matrix multiplication LUL⊤UZU as

LU · (L⊤UZU ) in Eq. (12) to boost the computation efficiency. Sub-

sequently, Algorithm 1 transforms ZU into ẐU by applying an 𝐿2
normalization to each row in ZU (Line 5) and then proceeds to

constructing R (Lines 6-9).

To be specific, we first generate a 𝑑U ×𝑑U Gaussian random ma-

trix G with every entry sampled independently from the standard

normal distribution (Line 6) and then apply a QR decomposition

over it to get a 𝑑U × 𝑑U orthogonal matrix Q (Line 7). The matrix

Q is distributed uniformly on the Stiefel manifold, i.e., the space of

all orthogonal matrices [43]. Next, Algorithm 1 calculates R′ by

R′ =
√︂

𝑒

𝑑U
·
(
𝑠𝑖𝑛 (Ẑ◦U ) ∥ 𝑐𝑜𝑠 (Ẑ

◦
U )

)
∈ R|U|×2𝑑U , (13)

where Ẑ◦U =
√︁
𝑑U · ẐU · Q⊤ and ∥ represents the horizontal

concatenation operator for matrices (Line 8). Finally, in Line 9, the

matrix R is obtained by normalizing each row of R′ as

R[𝑖 ] = R′ [𝑖 ]√︁
R′ [𝑖 ] · r

∈ R2𝑑U where r =
∑︁

𝑢ℓ ∈U
R′ [ℓ ] . (14)

Theorem 3.2. For any two nodes 𝑢𝑖 , 𝑢 𝑗 ∈ U, if R is the output of
Algorithm 1, then the following inequality holds:

1 − 17

16𝑑2

U
− 1

4𝑑U

1 + 17

16𝑑2

U
+ 1

4𝑑U

·𝑠 (𝑢𝑖 ,𝑢 𝑗 ) ≤ E[R[𝑖 ] ·R[ 𝑗 ] ] ≤
1 + 17

16𝑑2

U
+ 1

4𝑑U

1 − 17

16𝑑2

U
− 1

4𝑑U

·𝑠 (𝑢𝑖 ,𝑢 𝑗 )

Theorem 3.2 indicates that E[R[𝑖] · R[ 𝑗]] serves as an accurate

estimator of 𝑠 (𝑢𝑖 , 𝑢 𝑗 ), exhibiting extremely low bias, particularly

because 𝑑U often exceeds hundreds in practical scenarios.
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Algorithm 1:MSA Approximation

Input: An ABG G = (U ∪V, E,XU ), target node setU,

the balance coefficient 𝛼 , the number 𝛾 of iterations

Output:Matrix R
1 Calculate LU according to Eq. (7);

2 ZU ← 𝛼XU ;
3 for 𝑟 ← 1 to 𝛾 do
4 Update ZU according to Eq. (12);

5 Normalize ZU as ẐU by Eq. (2);

6 Sample a Gaussian random matrix G ∈ R𝑑U×𝑑U ;
7 Compute Q by a QR decomposition over G;
8 Compute R′ according to Eq. (13);

9 for 𝑢𝑖 ∈ U do Compute R[𝑖] according to Eq. (14);

10 return R;

3.2.1 SVD-based Attribute Dimension Reduction. Although
Algorithm 1 circumvents the need to construct the MSA for all

node pairs, it remains tenaciously challenging when dealing with

ABGs with vast attribute sets, i.e., 𝑑U being large. Recall that the

major computation expenditure in Algorithm 1 lies at Lines 3-4 and

Lines 7-8, which need 𝑂 (𝛾 · |E | · 𝑑U ) and 𝑂 (𝑑3U + |U| · 𝑑
2

U ) time,

respectively. As a result, when 𝑑U is high, e.g., 𝑑U = 𝑂 ( |U|), the
computational complexity of Algorithm 1 increases dramatically to

be cubic, rendering it impractical for large-scale ABGs.

To address this, we refine the input attribute vectors XU by

reducing their dimension from 𝑑U to a much smaller constant 𝑑

(𝑑 ≪ 𝑑U ). This approach aims to ensure that the 𝑑-dimensional

approximation X′U of XU still accurately preserves the MSA as per

Eq. (1). This adjustment reduces the computational cost to a linear

time complexity of𝑂 (𝛾 · |E | + |U|) since 𝑑 is a constant. To realize

this idea, we first apply the top-𝑑 singular value decomposition
(SVD) over XU to produce the decomposition result XU ≈ 𝚪𝚺𝚿

⊤
.

Utilizing the column-orthogonal (semi-unitary) property of 𝚿, i.e.,

𝚿
⊤
𝚿 = I, we have XUX⊤U ≈ 𝚪𝚺𝚿

⊤
𝚿𝚺𝚪

⊤ = 𝚪𝚺
2
𝚪
⊤
, implying

X′U = 𝚪𝚺 ∈ R |U |×𝑑 , (15)

which can be employed as a low-dimensional substitute ofXU input

to Algorithm 1. Along this line, we can derive a low-dimensional

version Z′U of feature vectors ZU using the iterative process at

Lines 2-4 in Algorithm 1 by simply replacing XU as X′U , i.e.,

Z′U = (1 − 𝛼 )
∞∑︁
𝑟=0

𝛼𝑟 ·
(
LUL⊤U

)𝑟
X′U .

Lemma 3.3. Let 𝚪𝚺𝚿⊤ be the exact top-𝑑 SVD of XU .��Z′U [𝑖 ] · Z′U [ 𝑗 ] − ZU [𝑖 ] · ZU [ 𝑗 ]
�� ≤ 𝜎2

𝑑+1
√︁
DU [𝑖, 𝑖 ] · DU [ 𝑗, 𝑗 ]

1 − 𝛼
holds for every two nodes 𝑢𝑖 , 𝑢 𝑗 ∈ U, where 𝜎𝑑+1 is the (𝑑 + 1)-th
largest singular value of XU .

Lemma 3.3 establishes the approximation guarantee ofZ′U , which

theoretically assures the accurate approximation of the MSA de-

fined in Eq. (1). Aside from the capabilities of preserving MSA and

reducing computation load, this SVD-based trick can surprisingly

denoise attribute data for enhanced clustering by its close connec-

tion to principal component analysis (PCA), as validated by our

Algorithm 2: Greedy Orthogonal NMF

Input: Matrix R, the number 𝑘 of clusters, the number 𝑇𝑓 of

iterations

Output:Matrix 𝚼

1 𝚪, 𝚺,𝚿← RandomizedSVD(R, 𝑘);
2 Initialize 𝚼 and H according to Eq. (18);

3 for 𝑡 ← 1 to 𝑇𝑓 do
4 Update H[ 𝑗, ℓ] ∀1 ≤ 𝑗 ≤ 2𝑑, 1 ≤ ℓ ≤ 𝑘 by Eq. (16);

5 Update 𝚼[𝑖, ℓ] ∀𝑢𝑖 ∈ U, 1 ≤ ℓ ≤ 𝑘 by Eq. (17);

6 return 𝚼;

experiments in Section 4.2.

3.3 Greedy Orthogonal NMF
Upon constructing R ∈ R |U |×2𝑑 (with 𝑑 = 𝑑U if the dimension

reduction from Section 3.2.1 is not applied) in Algorithm 1, TPO
passes it to the second phase, i.e., conducting an orthogonal non-

negative matrix factorization (NMF) of R as in Eq. (11) to create

𝚼. The pseudo-code of our solver to this problem is presented in

Algorithm 2, iteratively updating 𝚼 and H using an alternative

framework towards optimizing the objective function in Eq. (11).

(Lines 3-5). Specifically, given the number𝑇𝑓 of iterations and initial

guess of H and 𝚼, in each iteration, we first update each ( 𝑗, ℓ)-entry
(1 ≤ 𝑗 ≤ 2𝑑 and 1 ≤ ℓ ≤ 𝑘) in H following Eq. (16) while fixing

𝚼, and then update 𝚼[𝑖, ℓ] for 𝑢𝑖 ∈ U and 1 ≤ ℓ ≤ 𝑘 as in Eq. (17)

with H fixed.

H[ 𝑗, ℓ ] = H[ 𝑗, ℓ ] · (R⊤𝚼) [ 𝑗, ℓ ]
(H · (𝚼⊤𝚼) ) [ 𝑗, ℓ ]

(16)

𝚼[𝑖, ℓ ] = 𝚼[𝑖, ℓ ] ·

√︄
(RH) [𝑖, ℓ ]

(𝚼 · (𝚼⊤ · (RH) ) ) [𝑖, ℓ ]
(17)

The above update rules for solving Eq. (11) can be derived by

utilizing the auxiliary function approach [32] with Lagrangian mul-

tipliers in convex optimization, whose convergence is guaranteed

by the monotonicity theorem [10]. Note that we reorder the matrix

multiplications H𝚼⊤𝚼 and 𝚼𝚼
⊤RH in Eq. (16) and (17) to H · (𝚼⊤𝚼)

and 𝚼 · (𝚼⊤ · (RH)), respectively, so as to avert materializing 2𝑑×|U|
dense matrix H𝚼⊤ and |U| × |U| dense matrix 𝚼𝚼

⊤
. As such, the

computational complexities of updating H and 𝚼 in Eq. (16) and

(17) are reduced to 𝑂 ( |U|𝑑𝑘 + |U|𝑘2) per iteration.
The aforementioned computation is still rather costly due to the

numerous iterations needed for the convergence of 𝚼 and H, espe-
cially when 𝚼 and H are initialized randomly. We resort to a greedy

seeding strategy to expedite convergence, as in many optimization

problems. That is, we carefully select a good initialization of 𝚼 and

H in a fast but theoretically grounded manner. As described in Lines

1-2 in Algorithm 1, we set 𝚼 and H as follows:

𝚼 = 𝚪, H = 𝚿𝚺, (18)

where 𝚪 and 𝚿 are the top-𝑘 left and right singular vectors of R,
respectively, and 𝚺 is a diagonal matrix whose diagonal entries

are top-𝑘 singular values of R, which are obtained by invoking the

truncated randomized SVD algorithm [19] with R and 𝑘 . Note that

this routine consumes 𝑂 ( |U|𝑑𝑘 + (U + 𝑑)𝑘2) time [19] and can be

done efficiently in practice in virtue of its randomized algorithmic

design as well as the highly-optimized libraries (LAPACK and BLAS)

for matrix operations under the hood.
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Algorithm 3: Effective NCI Generation
Input:Matrix 𝚼 and the number 𝑇𝑔 of iterations

Output: The NCI matrix Y
1 𝚽 = I;
2 for 𝑡 ← 1 to 𝑇𝑔 do
3 for 𝑢𝑖 ∈ U do
4 Determine ℓ∗ by Eq. (21);

5 Update Y by Eq. (22);

6 Normalize Y such that each column has a unit 𝐿2 norm;

7 𝚽← 𝚼
⊤Y;

8 return Y;

Given the fact that singular vectors 𝚼 = 𝚪 are column-orthogonal,

i.e., 𝚼
⊤
𝚼 = I, the Eckart-Young Theorem [15] (Theorem A.1 in

Appendix A) pinpoints that Eq. (18) offers the optimal solution to

Eq. (11) when the non-negative constraints over 𝚼 andH are relaxed.

In simpler terms, Eq. (18) immediately gains a rough solution to

our optimization objective in Eq. (11), thereby drastically curtailing

the number of iterations needed for Lines 3-5.

3.4 Effective NCI Generation
In its final stage, TPO generates an NCI matrix Y by minimizing

the “difference” between 𝚼 returned by Algorithm 2 and the tar-

get NCI matrix Y. Recall from Eq. (9), our original objective is

to find a |U| × 𝑘 NCI matrix Y and a 2𝑑 × 𝑘 non-negative H
such that the total squared reconstruction error ∥R − YH⊤∥2

𝐹
=∑

𝑢𝑖 ∈U
∑𝑑

𝑗=1 (R[𝑖, 𝑗] − Y[𝑖] · H[ 𝑗])2 is minimized. Considering 𝚼

is a continuous version of Y (relaxing the constraint in Eq. (10)),

∥R − 𝚼H⊤∥2
𝐹
is capable of attaining a strictly lower reconstruction

error compared to ∥R−YH⊤∥2
𝐹
. Therefore, an ideal solution Y to Eq.

(9) ensures that ∥R − YH⊤∥2
𝐹
closely approximates ∥R − 𝚼H⊤∥2

𝐹
in

Eq. (11). Mathematically, the conversion from matrix 𝚼 into the NCI

matrix Y can be formulated as the minimization of the difference

of their reconstruction errors, i.e.,

��∥R − YH⊤∥2
𝐹
− ∥R − 𝚼H⊤∥2

𝐹

�� =��
trace((YY⊤ − 𝚼𝚼⊤) · RR⊤)

��
by Lemma 3.4.

Lemma 3.4. The following equation holds:��∥R − YH⊤ ∥2𝐹 − ∥R − 𝚼H⊤ ∥2𝐹
�� = ��

trace( (YY⊤ − 𝚼𝚼
⊤ ) · RR⊤ )

�� . (19)

Further, we reformulate the problem as follows:

min

𝚽,Y
∥𝚼𝚽 − Y∥2 s.t. 𝚽𝚽⊤ = I and Y is an NCI matrix, (20)

which implies that, if the NCI matrix Y and the 𝑘×𝑘 row-orthogonal

matrix 𝚽 minimize ∥𝚼𝚽− Y∥2, YY⊤ − 𝚼𝚼⊤ ≈ 𝚼𝚽𝚽
⊤
𝚼
⊤ − 𝚼𝚼⊤ ≈ 0

holds and the objective loss in Eq. (19) is therefore minimized.

To solve Eq. (20), we develop Algorithm 3 in TPO, which obtains

the NCI matrix Y through an iterative framework wherein 𝚽 and

Y are refined in an alternative fashion till convergence. Initially,

Algorithm 3 starts by taking as input the matrix 𝚼 and the number

𝑇𝑔 of iterations and initializing 𝚽 as a 𝑘 × 𝑘 identity matrix (Line 1).

It then launches an iterative process at Lines 2-7 to jointly refine Y
and 𝚽. Specifically, in each of the𝑇𝑔 iterations, TPO first determines

the cluster id of each node 𝑢𝑖 ∈ U via (Line 4)

ℓ∗ = arg max

1≤ℓ≤𝑘
𝚼[𝑖] · 𝚽[:, ℓ] (21)

and then updates the cluster indicator Y[𝑖] of node 𝑢𝑖 as follows

Table 2: Attributed Bipartite Graphs

Name CiteSeer Cora MovieLens Google Amazon
|U| 1,237 1,312 6,040 64,527 2,330,066

|V| 742 789 3,883 868,937 8,026,324

|E | 1,665 2,314 1,000,209 1,487,747 22,507,155

𝑑U 3,703 1,433 30 1,024 800

𝑑V 3,703 1,433 21 - -

𝑘 6 7 21 5 3

(Line 5):

Y[𝑖, ℓ] =
{
1 if ℓ = ℓ∗,

0 otherwise,
∀1 ≤ ℓ ≤ 𝑘. (22)

Each column in Y is later 𝐿2-normalized, i.e.,

∀1 ≤ ℓ ≤ 𝑘

√︃∑
𝑢𝑖 ∈U Y[𝑖, ℓ]2 = 1, (23)

in accordance with the NCI constraint in Eq. (10) (Line 6). In a

nutshell, Lines 3-6 optimizes Eq. (20) by updating Ywith𝚽 fixed. To

explain, recall the constraint of the NCI matrix Y stated in Eq. (10),

each row of Y has merely one non-zero entry. Hence, by locating the

column id ℓ∗ whose corresponding entry (𝚼𝚽) [𝑖, ℓ∗] is maximum

in the 𝑖-th row of 𝚼𝚽 (i.e., Eq. (21)) and meanwhile updating Y[𝑖]
as Eqs. (22) and (23) as Lines 5-6, the distance between 𝚼𝚽 and Y
in Eq. (20) is naturally minimized.

With the refined Y at hand, the subsequent work turns into

updating the 𝑘 × 𝑘 matrix 𝚽 towards optimizing

min

𝚽

∥𝚼𝚽 − Y∥2 s.t. 𝚽𝚽⊤ = I.

Given Y, the minimizer to this problem is 𝚽 = 𝚼
⊤Y by utilizing

Lemma 4.14 in [61]. Therefore, 𝚽 is updated to 𝚼
⊤Y at Line 7.

After repeating the above procedure for𝑇𝑔 iterations, TPO returns
Y as the final clustering result. Practically, a dozen iterations are

sufficient to yield high-caliber Y, as validated in Section 4.3.

4 Experiments
In this section, we experimentally evaluate our proposed 𝑘-ABGC

method TPO against 19 competitors over five real ABGs in terms of

clustering quality and efficiency. All the experiments are conducted

on a Linux machine powered by 2 Xeon Gold 6330 @2.0GHz CPUs

and 1TB RAM. For reproducibility, the source code and datasets are

available at https://github.com/HKBU-LAGAS/TPC.

4.1 Experimental Setup

Datasets. Table 2 lists the statistics of the five datasets used in the

experimental study. |U|, |V|, and |E | denote the cardinality of two

disjoint node setsU,V , and edge set E of G, respectively, while𝑑U
(resp. 𝑑V ) stands for the dimensions of attribute vectors of nodes in

U (resp.V). The number of ground-truth clusters of nodesU in G
is 𝑘 . Citeseer and Cora are synthesized from real citation graphs in

[27] by dividing nodes in each cluster into two equal-sized partitions

(i.e., U and V) and removing intra-partition edges and isolated

nodes as in [62]. In particular, nodes represent publications, edges

denote their citation relationships, and labels correspond to the

fields of study. The well-known MovieLens dataset [20] comprises

user-movie ratings, where clustering labels are users’ occupations

inU. Google and Amazon are extracted from the Google Maps [68]

https://github.com/HKBU-LAGAS/TPC
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Table 3: Clustering Quality (Larger ACC, NMI, and ARI indicate higher clustering quality).

Method CiteSeer Cora MovieLens Google Amazon Rank
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

KMeans [21] 0.526 0.277 0.225 0.431 0.229 0.137 0.298 0.363 0.170 0.370 0.053 0.012 0.502 0.038 0.079 5.4

SpecClust [56] 0.222 0.017 -0.001 0.311 0.026 0.003 0.318 0.392 0.197 - - - - - - 11.27

NMF [65] 0.508 0.222 0.228 0.380 0.165 0.110 0.568 0.611 0.482 0.384 0.069 0.062 0.390 0.006 0.015 5.6

SCC [8] 0.243 0.015 0.012 0.280 0.040 0.017 0.128 0.030 0.004 0.425 0.038 0.038 0.470 0.018 -0.016 10.27

SBC [28] 0.239 0.015 0.012 0.262 0.059 0.023 0.116 0.035 0.006 0.394 0.006 -0.003 0.485 0.003 0.005 10.87

CCMOD [2] 0.200 0.010 0.003 0.264 0.066 0.040 0.141 0.029 0.010 OOM OOM OOM OOM OOM OOM 12.27

SpecMOD [29] 0.238 0.012 0.003 0.290 0.023 -0.007 0.125 0.033 0.009 OOM OOM OOM OOM OOM OOM 12.6

InfoCC [9] 0.235 0.013 0.007 0.223 0.035 0.018 0.095 0.036 0.007 0.277 0.008 0.008 0.378 0.007 0.003 11.54

DeepCC [63] 0.205 0.013 0.004 0.213 0.014 0.006 0.093 0.027 0.004 0.324 0.105 0.031 - - - 12.67

HOPE [72] 0.473 0.169 0.288 0.268 0.025 0.043 0.115 0.009 0.037 0.269 0 0 0.452 0 0.002

ACMin [77] 0.450 0.143 0.141 0.650 0.470 0.410 0.122 0.032 0.009 0.312 0.023 0.020 0.428 0.012 0.003 7.67

GRACE [12] 0.469 0.209 0.199 0.351 0.136 0.103 0.298 0.249 0.195 0.420 0 0 0.427 0.008 0 7.47

AGCC [85] 0.448 0.144 0.153 0.650 0.517 0.406 0.538 0.589 0.480 OOM OOM OOM OOM OOM OOM 7.34

Dink-Net [37] 0.308 0 0 0.231 0.004 0.007 0.123 0.001 0 0.429 0 0 OOM OOM OOM

node2vec [18] 0.209 0.007 0.001 0.220 0.008 0 0.074 0.011 0 0.280 0 0 - - - 14.8

BiNE [13] 0.196 0.005 0 0.174 0.005 -0.002 0.071 0.012 0 - - - - - - 15.54

GEBE [73] 0.231 0.013 0.002 0.293 0.014 0.006 0.095 0.014 -0.002 0.428 0 0 0.489 0 0 12.14

PANE [75, 76] 0.443 0.154 0.136 0.537 0.526 0.339 0.855 0.923 0.838 0.359 0.127 0.070 0.497 0.083 0.102 4.2

BiANE [23] 0.259 0.057 0.016 0.341 0.239 0.080 0.091 0.053 0.013 - - - - - - 10.21

TPO (𝑑 = 𝑑U ) 0.541 0.256 0.265 0.662 0.477 0.408 0.931 0.961 0.957 0.367 0.112 0.091 0.502 0.045 0.091 2.54

TPO 0.625 0.322 0.348 0.671 0.475 0.416 0.931 0.961 0.957 0.444 0.135 0.138 0.504 0.055 0.104 1.27

and Amazon review dataset [22], where edges represent the reviews

on restaurants and books posted by users.

Competitors and Parameters. We compare TPO against 19 exist-

ing methods, which can be categorized into four groups as follows:

• Data Clustering: KMeans [21], NMF [65], and SpecClust [56];
• Network Embedding: node2vec [18], BiNE [13], BiANE [23], PANE
[75, 76], and GEBE [73];

• Attributed Graph Clustering:AGCC [85],ACMin [77],GRACE [12],
Dink-Net [37];
• Bipartite Graph Clustering: SCC [8], SBC [28], InfoCC [9], Spec-
MOD [29], CCMOD [2], DeepCC [63], and HOPE [72].

Unless otherwise specified, on all datasets, we set the numbers𝑇𝑓
and𝑇𝑔 of iterations required by Algorithms 2 and 3 in our proposed

TPO to 5 and 20, respectively. Regarding parameters 𝛼 and 𝛾 , by

default, we set 𝛼 = 0.6, 𝛾 = 6 on CiteSeer andMovieLens, 𝛼 = 0.9, 𝛾 =

10 on Cora and Google, and 𝛼 = 0.5, 𝛾 = 1 on Amazon, respectively.
To deal with the high attribute dimensions 𝑑U of the CiteSeer, Cora,
Google, and Amazon datasets, we set their new attribute dimensions

𝑑 in Section 3.2.1 to 32, 128, 32, and 64, respectively. We refer to the

version of TPO without the attribute dimension reduction module

in Section 3.2.1 as TPO (𝑑 = 𝑑U ). More implementation details of

our method and baselines are in our technical report [78].

Evaluation Metrics. Following convention, we adopt three widely
used measures [6, 25, 31, 57, 77, 85] to assess the clustering quality,

namely (i) Clustering Accuracy (ACC), (ii) Normalized Mutual In-
formation (NMI), and (3) Adjusted Rand Index (ARI), for measuring

the quality of clusters produced by each evaluated method in the

presence of the ground-truth clusters of the tested dataset. Particu-

larly, ACC and NMI scores range from 0 to 1.0, whilst ARI ranges

from −0.5 to 1.0. For each of these metrics, higher values indicate

better clustering quality. Regarding efficiency evaluation, we re-

port the running time in seconds (measured in wall-clock time) of

each method on each dataset, excluding the time for input (loading

datasets) and output (saving clustering results). The formulas for

evaluation metrics are in our technical report [78].

4.2 Clustering Performance
This set of experiments reports the clustering quality achieved

by TPO and all competitors over the five datasets, as well as their

respective running times. We omit a method if it cannot report the

results within three days or incur out-of-memory (OOM) errors.

Since TPO is randomized, we repeat it five times and report the

average performance.

Clustering Quality. Table 3 shows the ACC, NMI, and ARI scores

of all methods on five ABGs, and their overall average performance

rankings. We highlight the top-3 best clustering results on each

dataset in gray with darker shades indicating higher quality. TPO
consistently outperforms the 17 competitors on the CiteSeer,Movie-
Lens, and Google datasets in terms of ACC, NMI, and ARI, by sub-

stantial margins of up to 9.9% for ACC, 4.5% for NMI, and 12% for

ARI, respectively. The only exceptions are on Cora and Amazon,
where TPO achieves the highest ACC and ARI results but inferior

NMI scores compared to PANE or AGCC. In addition, TPO (𝑑 = 𝑑U )

exhibits competitive clustering effectiveness, which either is second

only to TPO or obtains the third best clustering results in most cases.

Specifically, TPO (𝑑 = 𝑑U ) is comparable to TPO on Cora, Movie-
Lens, and Amazon with a performance degradation at most 0.9%

in ACC, 1.0% in NMI, and 1.3% in ARI. Over all datasets, TPO and
TPO (𝑑 = 𝑑U ) attain the best and second best average performance

rank (smaller rank is better), respectively. The evident superiority

of TPO and TPO (𝑑 = 𝑑U ) manifests the accuracy of our proposed

MSA model in Section 2.2 in preserving the attribute similarity and

topological connections between nodes, as well as the effectiveness

of theoretically-grounded three-phase optimization framework in-

troduced in Section 3.

At this point, a keen reader may wonder why TPO with attribute

dimension reduction outperforms TPO (𝑑 = 𝑑U ) on most datasets,

especially CiteSeer and Google, as it seems that the former is an

approximate version of the latter. Notice that TPO and TPO (𝑑 = 𝑑U )

output identical results, as dimension reduction is not needed on

MovieLens and TPO turns to be TPO (𝑑 = 𝑑U ). Recall that the only
difference between TPO and TPO (𝑑 = 𝑑U ) is that TPO employs a

truncated SVD over the input attribute vectors XU of a node inU
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Figure 3: Running time in seconds.
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Figure 4: Clustering accuracy when varying parameters.

for dimension reduction as stated in Section 3.2.1. Aside from the

crucial theoretical assurance offered by this SVD-based approach

in the MSA approximation, it implicitly conducts a PCA on the

attribute vectors, extracting key features from the input attributes

while eradicating noisy ones. In brief, the SVD-based trick in Section

3.2.1 grants TPO the additional ability to denoise the attribute data,

thus elevating the results’ quality.

Efficiency. For clarity, we compare the empirical efficiency of TPO
and TPO (𝑑 = 𝑑U ) only against competitors ranked in the top

7 for clustering quality, as shown in Table 3. Figure 3 plots the

computation times required by each of these methods on Cora,
MovieLens, Google, and Amazon. The 𝑦-axis is the running time

(seconds) in the log scale. On each of the diagrams in Figures 3(a),

3(b), 3(c), and 3(d), all the bars are displayed from left to right in an

ascending order w.r.t. their average performance rank in Table 3.

Accordingly, except the first two bars from the left for TPO and TPO
(𝑑 = 𝑑U ), the third bars (from the left) in these figures illustrate

the running times of the best competitors, i.e., AGCC on Cora, and
PANE on MovieLens, Google, and Amazon, respectively. As we can
see, TPO is consistently faster than the state-of-the-art approaches,

AGCC or PANE, on four datasets, often by orders of magnitude. For

instance, on Cora, Google, and Amazon, TPO takes 0.47, 28.7, and 178
seconds, respectively, whereas the best baselines AGCC or PANE
cost around 19 seconds, 23 minutes, and 4.1 hours, respectively,

attaining 40×, 48×, and 83× speedup. In addition, TPO also enjoys

a considerable efficiency gain of up to 19.9× over TPO (𝑑 = 𝑑U ),
attributed to the SVD-based dimension reduction (Section 3.2.1). On

theMovieLens dataset, the input attribute dimension𝑑U = 30 is low,

and the attribute dimension reduction is therefore disabled, making

TPO and TPO (𝑑 = 𝑑U ) yield the same running time, which is 3.46×
over the best competitor PANE. Although NMF, KMeans, and SCC
run much faster than TPO on some datasets by either neglecting the

graph topology or discarding the attribute data, their result quality

is no match for our solution TPO.

In summary, TPO consistently delivers superior results for 𝑘-

ABGC tasks over ABGs with various volumes while offering high

practical efficiency, which corroborates the efficacy of our novel

objective function based on MSA in Section 2 and the optimization

solver with careful algorithmic designs developed in Section 3.

4.3 Parameter Analysis
In these experiments, we empirically investigate the impact of five

key parameters in TPO: 𝛼,𝛾,𝑇𝑓 ,𝑇𝑔 , and 𝑑 . For each of them, we run

TPO over CiteSeer, Cora, MovieLens, and Google, respectively, by
varying the parameter with others fixed as in Section 4.1.

Varying 𝛼 and 𝛾 . Figures 4(a) shows that on Cora and Google,
TPO’s clustering performance markedly improves as 𝛼 increases

from 0.1 to 0.9, indicating the importance of graph structure in

these datasets. On CiteSeer and MovieLens, setting 𝛼 = 0.6 will

be a favorable choice, which results in an optimal combination of

attributes and graph topology and hence the highest ACC scores.

Figures 4(b) depicts the ACC scores when 𝛾 increases from 0 to

10. When 𝛾 = 0, the graph structure is disregarded in TPO, namely

ZU = XU . It can be observed on all datasets that the clustering

quality rises with𝛾 increasing except CiteSeer andMovieLens, where
the ACC results reach a plateau after 𝛾 ≥ 6. This is consistent with

the fact that a larger 𝛾 produces a more accurate solution ZU to

the objective in Eq. (3), and thus, higher clustering quality.

Varying 𝑇𝑓 and 𝑇𝑔. Figures 4(c) presents the ACC scores when

the 𝑇𝑓 of iterations in Algorithm 2 is varied from 0 to 20. We can

conclude that our greedy seeding strategy described in Section

3.3 is highly effective in enabling swift convergence, as additional

optimization iterations merely bring minor gains in clustering per-

formance. On Cora and CiteSeer, the ACC scores see an uptick when

varying 𝛾 from 0 to 10, followed by a pronounced downturn. Such

a performance decline is caused by overfitting in solving Eq. (11).

From Figures 4(d) reporting clustering performance changes when
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varying 𝑇𝑔 from 0 to 20, we can make analogous observations on

the four datasets. The evaluation scores first experience a sharp

increase as 𝑇𝑔 increases from 0 to 5. After that, the ACC remain

invariant with 𝛾 increasing. The results manifest the effectiveness

of our solver developed in Section 3.4 in fast NCI generation.

Varying 𝑑 . Intuitively, a large 𝑑 may lead to accurate preservation

of MSA as per Lemma 3.3 and further improve clustering quality.

However, in practice, the original attribute vectors XU embody

noises, especially when 𝑑U is high. As pinpointed and validated in

Sections 3.2.1 and 4.2, our SVD-based dimension reduction inher-

ently applies a PCA over XU for noise elimination, considerably

upgrading the empirical result quality. That is to say, the choice of 𝑑

strikes a balance between capturing MSA and removing noisy data,

consistent with our empirical results in Figure 4(e). In particular,

on CiteSeer, Cora, and Google, picking 32, 128, and 32 for dimension

𝑑 , respectively, can strike a good balance between MSA preserva-

tion and noisy reduction for superior clustering performance. On

MovieLens, the attribute dimension reduction is not enabled when

𝑑 ≥ 32 since its original dimension 𝑑U = 30. We refer interested

readers to our technical report [78] for NMI and efficiency results.

5 Related Work

Bipartite Graph Clustering. A classic methodology [87] for bi-

partite graph clustering first projects a bipartite graph G into a

unipartite graph by connecting every two nodes from the same

partitionU if they share common neighbors in G. Then, a standard
graph clustering algorithm for node clustering can be adopted on

the constructed unipartite graph. However, the projection often

leads to unipartite graphs 𝑂 ( |U|2) edges, which is intolerable for

even medium-sized graphs [71]. In our previous work [72], we

addressed this problem by transforming it into a two-stage approx-

imation framework.

Unlike the projection-based methods, another line of research

focuses on simultaneously clustering two disjoint sets of nodes

(i.e.,U andV) in a bipartite graph. These co-clustering techniques

have been extensively investigated in the literature [17] and span a

variety of applications in bioinformatics and text mining. Several

attempts [8, 28, 29] are made to extend spectral clustering to bi-

partite graphs. Analogously, Ailem et al. [2] and Dhillon et al. [9]

propose generating co-clusters by extending and optimizing classic

metrics of modularity and mutual information on bipartite graphs,

respectively. DeepCC [63] creates low-dimension instances and

features using a deep autoencoder, then assigns clusters using a

variant of the Gaussian mixture model. To handle the resolution

limit in prior works as well as incorporate attribute information,

Kim et al. [25] designed ABC, which incurs a severe efficiency issue

due to its quadratic running time 𝑂 ( |U|2 + |V|2).
Attributed Graph Clustering. As surveyed in [4, 5, 33, 77], there

is a large body of work on attributed graph clustering (AGC). Ac-

cording to [77], existing AGC techniques can be categorized into

four groups: edge-weigh-based methods [51, 79], distance-based

methods [11, 88], statistics-based models [66, 77, 80], and graph

learning-based methods [12, 42, 57, 58, 85]. Among them, graph

learning-based approaches [12, 37, 42, 85] have achieved state-of-

the-art performance, as reported in [30, 77]. These methods obtain

high clustering quality on attributed graphs at the cost of costly

neural network training, thus incurring poor scalability on large

graphs. To our knowledge, the statistical-model-based solution,

ACMin [77], is the only AGC method that scales to massive graphs

with millions of nodes and billions of edges, while attaining high

result quality. However, none of them are custom-made for ABGs,

producing compromised result quality for 𝑘-ABGC.

Network Embedding. In recent years, network embedding, which

converts each node in a graph into an embedding vector capturing

the surrounding structures, has been employed in a wide range

of graph analytics tasks, and has seen remarkable success [7, 14].

In particular, by simply feeding them into data clustering meth-

ods, e.g., KMeans, such embedding vectors can be utilized to cope

with 𝑘-ABGC. However, the majority of network embedding works

[13, 18, 47, 48, 53, 54, 73, 74] are designed for graphs in the ab-

sence of node attributes. To bridge this gap, a series of efforts

[6, 24, 35, 44, 55, 60, 75, 76] have been made towards incorporat-

ing node attributes into embedding vectors for enhanced result

utility. These approaches still suffer from sub-optimal clustering

performance as they fall short of preserving the hidden seman-

tics underlying bipartite graphs. To learn effective node embed-

dings over ABGs, [1, 23] extend SkipGram models [39] to ABGs by

picking node-pair samples with consideration of both their intra-

partition/inter-partition proximities and attribute similarities. Athar

et al. [3] project the ABG into two homogeneous graphs based on

topological connections and attribute similarities, and then invoke

unsupervised GNNs on the constructed graphs for embedding gen-

eration. Moreover, Zhang et al. [86] propose IGE [86] for learning

node embeddings on dynamic ABGs with a focus on temporal

dependence of edges rather than the bipartite graph structures.

These works either fall short of preserving multi-hop relationships

between nodes or struggle to cope with large ABGs due to the

significant expense of training.

6 Conclusion
This paper presents TPO, an effective and efficient solution for 𝑘-

ABGC tasks. TPO achieves remarkable performance, attributed to

a novel problem formulation based on the proposed multi-scale

attribute affinity measure for nodes in ABGs, and a well-thought-

out three-phase optimization framework for solving the problem.

Through a series of theoretically-grounded efficiency techniques

developed in this paper, TPO is able to scale to large ABGs with

millions of nodes and hundreds of millions of edges while offering

state-of-the-art result quality. The superiority of TPO over 19 base-

lines is experimentally validated over 5 real ABGs in terms of both

clustering quality and empirical efficiency.
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A Theorems and Proofs
Theorem A.1 (Eckart–Young Theorem [15]). Suppose that

M𝑘 ∈ R𝑛×𝑘 is the rank-𝑘 approximation toM ∈ R𝑛×𝑛 obtained by
exact SVD, then min

𝑟𝑎𝑛𝑘 (M̂)≤𝑘 ∥M − M̂∥2 = ∥M − M𝑘 ∥2 = 𝜎𝑘+1,
where 𝜎𝑖 represents the 𝑖-th largest singular value ofM.

Proof of Lemma 2.2. We first rewrite that Eq. (5) as

trace(Z⊤U · (I − LUL
⊤
U ) · ZU ) . (24)

The equivalence can be deduced by the definition of Eq. (5),

O𝑔 =
1

2

∑︁
𝑢𝑖 ,𝑢 𝑗 ∈U

𝑤 (𝑢𝑖 ,𝑢 𝑗 ) ·
 ZU [𝑖 ]√︁

DU [𝑖, 𝑖 ]
− ZU [ 𝑗 ]√︁

DU [ 𝑗, 𝑗 ]

2
=

∑︁
𝑢𝑖 ,𝑢 𝑗 ∈U

𝑤 (𝑢𝑖 ,𝑢 𝑗 )
2

(
∥ZU [𝑖 ] ∥2
DU [𝑖, 𝑖 ]

+ ∥ZU [ 𝑗 ] ∥
2

DU [ 𝑗, 𝑗 ]
− 2ZU [𝑖 ] · ZU [ 𝑗 ]√︁

DU [𝑖, 𝑖 ]
√︁
DU [ 𝑗, 𝑗 ]

)

=
∑︁
𝑣ℓ ∈V

∑︁
𝑢𝑖 ,𝑢 𝑗 ∈U

𝑤 (𝑢𝑖 , 𝑣ℓ )𝑤 (𝑢 𝑗 , 𝑣ℓ )
DV [ℓ, ℓ ]

(
∥ZU [𝑖 ] ∥2
DU [𝑖, 𝑖 ]

− ZU [𝑖 ] · ZU [ 𝑗 ]√︁
DU [𝑖, 𝑖 ]

√︁
DU [ 𝑗, 𝑗 ]

)
=

∑︁
𝑢𝑖 ∈U

∥ZU [𝑖 ] ∥2 −
∑︁
𝑣ℓ ∈V

∑︁
𝑢𝑖 ,𝑢 𝑗 ∈U

LU [𝑖, ℓ ] · L[ 𝑗, ℓ ] · ZU [𝑖 ] · ZU [ 𝑗 ]

=
∑︁
𝑢𝑖

ZU [𝑖 ] · ZU [𝑖 ] −
∑︁
𝑣ℓ ∈V

(L⊤UZU ) [ℓ ] · (L
⊤
UZU ) [ℓ ]

= trace(Z⊤U · (I − LUL⊤U ) · ZU ) .

Next, we set the derivative of Eq. (24) w.r.t. ZU to zero and get the

optimal ZU as:

𝜕{(1 − 𝛼) · ∥ZU − XU ∥2𝐹 + 𝛼 · trace(Z
⊤
U (I − LUL

⊤
U )ZU )}

𝜕ZU
= 0

=⇒ (1 − 𝛼) · (ZU − XU ) + 𝛼 (I − LUL⊤U )
⊤ZU = 0

=⇒ ZU = ((1 − 𝛼) · I + 𝛼 · (I − LUL⊤U ))
−1 · (1 − 𝛼)XU .

By Neumann series, i.e., (I −M)−1 = ∑∞
𝑘=0

M𝑘
, we have(

(1 − 𝛼) · I + 𝛼 (I − LUL⊤U )
)−1

=

(
(1 − 𝛼) · I + 𝛼 (I − LUL⊤U )

)−1
=

(
I − 𝛼 · LUL⊤U

)−1
=

∞∑︁
𝑟=0

𝛼𝑟 · (LUL⊤U )
𝑟 ,

which seals the proof. □

Proof of Lemma 3.1. We first need the following lemma:

Lemma A.2. The optimization objective in Eq. (8) is equivalent to
optimizing: maxY trace

(
Y⊤SY

)
, where Y is defined in Eq. (10) and S

is a |U| × |U| matrix where S[𝑖, 𝑗] = 𝑠 (𝑢𝑖 , 𝑢 𝑗 ).

Then, by the connection of the Frobenius norm and trace of

matrices, i.e., ∥M∥2
𝐹
= trace(M⊤M) = trace(MM⊤), we have

J = ∥R − YH⊤∥2𝐹 = trace(RR⊤ − RHY⊤ − YH⊤R⊤ + YH⊤HY⊤)
= trace(RR⊤) − trace(RHY⊤) − trace(YH⊤R⊤)
+ trace(YH⊤HY⊤)

= trace(RR⊤ − 2YH⊤R⊤) − trace(Y⊤YH⊤H)
= trace(RR⊤ − 2YH⊤R⊤ + H⊤H) .

The zero gradient condition
𝜕J
𝜕H = −2R⊤Y + 2Y = 0 leads to H =

R⊤Y. Hence,

J = trace(RR⊤ − 2YH⊤R⊤ + H⊤H)
= trace(RR⊤) − 2 trace(YY⊤RR⊤) + trace(Y⊤RR⊤Y)
= trace(RR⊤) − 2 trace(Y⊤RR⊤Y) + trace(Y⊤RR⊤Y)
= trace(RR⊤) + trace(Y⊤RR⊤Y). (25)

Since trace(RR⊤) is a constant, maximizing J = ∥R − YH⊤∥2
𝐹
is

equivalent to maximizing trace(Y⊤RR⊤Y) = trace(Y⊤SY). □

Proof of Lemma A.2. Let S be a |U|×|U|matrixwhere S[𝑖, 𝑗] =
𝑠 (𝑢𝑖 , 𝑢 𝑗 ) and S𝑑 be a |U| × |U| diagonal matrix in which S𝑑 [𝑖, 𝑖] =∑
𝑢 𝑗 ∈U 𝑠 (𝑢𝑖 , 𝑢 𝑗 ). Then,
1

|Cℓ |
∑︁

𝑢𝑖 ∈Cℓ ,𝑢 𝑗 ∈U\Cℓ
𝑠 (𝑢𝑖 , 𝑢 𝑗 ) =

1

2

∑︁
𝑢𝑖 ,𝑢 𝑗 ∈U

S[𝑖, 𝑗] · (Y[𝑖, ℓ] − Y[ 𝑗, ℓ])2

= Y[:, ℓ]⊤ · (S𝑑 − S) · Y[:, ℓ] .
Thus, we can rewrite Eq. (8) asminY trace(Y⊤ (S𝑑 − S)Y). Note that
it can be further simplified asmaxY trace

(
Y⊤SY

)
, which completes

the proof. □

Proof of Theorem 3.2. Let z = ẐU [𝑖]−ẐU [ 𝑗] and Q̂ =
√︁
𝑑U ·

Q. Based on the definition of R′ in Eq. (13), we can get

E[R′ [𝑖] · R′ [ 𝑗]] =E

[
𝑒

𝑑U

𝑑U∑︁
ℓ=1

𝑠𝑖𝑛(Q̂[ℓ] · ẐU [𝑖]) · 𝑠𝑖𝑛(Q̂[ℓ] · ẐU [ 𝑗])

− 𝑐𝑜𝑠 (Q̂[ℓ] · ẐU [𝑖]) · 𝑐𝑜𝑠 (Q̂[ℓ] · ẐU [ 𝑗])
]

=E


𝑒

𝑑U

𝑑U∑︁
ℓ=1

𝑐𝑜𝑠 (Q̂[ℓ] · (ẐU [𝑖] − ẐU [ 𝑗]))


=E


𝑒

𝑑U

𝑑U∑︁
ℓ=1

𝑐𝑜𝑠 (Q̂[ℓ] · z)
 (26)

By Lemma 5 in [82], for any vector Q̂[ℓ],�����E[𝑐𝑜𝑠 (Q̂[ℓ] · z)]𝑒−∥z∥2/2
−

(
1 − ∥z∥

4

4𝑑U

)����� ≤ ∥z∥4 · (∥z∥4 + 8∥z∥2 + 8)16𝑑2U
.

Note that for each 𝑢𝑖 ∈ U, the row vector ẐU [𝑖] is 𝐿2 normalized

(Line 5), i.e., ∥z∥2 ∈ [0, 1]. Based thereon, the above inequality can

be transformed into

1 − 17

16𝑑2U
− 1

4𝑑U
≤ E[𝑐𝑜𝑠 (Q̂[ℓ] · z)]

𝑒−∥z∥2/2
≤ 1 + 17

16𝑑2U
+ 1

4𝑑U
. (27)

According to Line 5 of Algorithm 1, ∥ẐU [𝑖] ∥2 = 1 ∀𝑢𝑖 ∈ U. Thus,

∥ẐU [𝑖] − ẐU [ 𝑗] ∥2 = ∥ẐU [𝑖] ∥2 + ∥ẐU [ 𝑗] ∥2 − 2ẐU [𝑖] · ẐU [ 𝑗]

= 2(1 − ẐU [𝑖] · ẐU [ 𝑗]) .

Thus, 𝑒 · 𝑒−
∥z∥2
2 = 𝑒 · 𝑒−

∥ẐU [𝑖 ]−ẐU [ 𝑗 ] ∥
2

2 = 𝑒ẐU [𝑖 ] ·ẐU [ 𝑗 ] . Combining

Eq. (27) and Eq. (26) leads to

1 − 17

16𝑑2U
− 1

4𝑑U
≤ E[R′ [𝑖] · R′ [ 𝑗]]

𝑒ẐU [𝑖 ] ·ẐU [ 𝑗 ]
≤ 1 + 17

16𝑑2U
+ 1

4𝑑U
. (28)

Further, Eq. (28) implies

1 − 17

16𝑑2U
− 1

4𝑑U
≤

E[∑𝑢ℓ ∈U R′ [𝑖] · R′ [ℓ]]∑
𝑢ℓ ∈U 𝑒ẐU [𝑖 ] ·ẐU [ℓ ]

≤ 1 + 17

16𝑑2U
+ 1

4𝑑U
.

(29)
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According to Eq. (14), we can obtain

E[R[𝑖] · R[ 𝑗]] = E

[
R′ [𝑖] · R′ [ 𝑗]√︁

R′ [𝑖] · r ·
√︁
R′ [ 𝑗] · r

]
.

Note that, by r’s definition in Eq. (14), we have E[R′ [𝑖] · r] =
E[∑𝑢ℓ ∈U R′ [𝑖] · R′ [ℓ]]. Therefore, plugging Eq. (28) and Eq. (29)

into the above equation proves the theorem. □

Proof of Lemma 3.4. According to Eq. (25), optimizing Eq. (9)

is equivalent to maximizing trace(Y⊤RR⊤Y). Using the cyclic prop-
erty of matrix trace, we have trace(Y⊤RR⊤Y) = trace(YY⊤RR⊤)
and trace(𝚼⊤RR⊤𝚼) = trace(𝚼𝚼⊤RR⊤). Consequently,��∥R − YH⊤∥2𝐹 − ∥R − 𝚼H⊤∥2𝐹 �� (30)

=
��
trace(Y⊤RR⊤Y) − trace(𝚼⊤RR⊤𝚼)

��
=

��
trace((YY⊤ − 𝚼𝚼⊤)RR⊤)

�� .
The lemma is therefore proved. □

Proof of Lemma 3.3. First, define PU as follows:

PU = (1 − 𝛼)
∞∑︁
𝑟=0

𝛼𝑟 ·
(
LUL

⊤
U

)𝑟
. (31)

Suppose that 𝚪𝚺𝚿
⊤
be the exact top-𝑑 SVDofXU , by Eckart–Young

Theorem [15] (Theorem A.1), we have ∥𝚪𝚺𝚿⊤ − XU ∥2 ≤ 𝜎𝑑+1,
where 𝜎𝑑+1 is the (𝑑 + 1)-th largest singular value of XU . Addition-

ally, we can obtain ∥𝚪𝚺2𝚪⊤ − XUX⊤U ∥2 ≤ 𝜎2
𝑑+1. By the definition

of PU in Eq. (31), we have

PU = D1/2
U ·

𝛾∑︁
𝑟=0

𝛼𝑡 ·
(
D−1U BD−1V B⊤

)𝑟
· D−1/2U ,

where D−1U B and D−1V B⊤ are two row-stochastic matrices, i.e., the

entries at each row sum up to 1. Let M = D−1U BD−1V B⊤. Since
the multiplication of two row-stochastic matrices yields a row-

stochastic matrix, M = D−1U BD−1V B⊤ is a row-stochastic matrix,

which further connotes thatM𝑟 =

(
D−1U BD−1V B⊤

)𝑟
is row-stochastic,

i.e., ∥M[𝑖] ∥1 =
∑
𝑢ℓ ∈U M[𝑖, ℓ] = 1 ∀𝑢𝑖 ∈ U. Hence, given a matrix

𝚷 =
∑∞
𝑟=0 𝛼

𝑟M𝑟
,

∥𝚷[𝑖] ∥1 =
∞∑︁
𝑟=0

𝛼𝑟 =
1

1 − 𝛼 ∀𝑢𝑖 ∈ U .

Therefore, we can derive that

|F[𝑖] · F[ 𝑗] − ZU [𝑖] · ZU [ 𝑗] |
= | (PU𝚪𝚺) [𝑖] · (PU𝚪𝚺) [ 𝑗] − (PUXU ) [𝑖] · (PUXU ) [ 𝑗] |
=

��PU [𝑖] · (𝚪𝚺2𝚪⊤ − XUX⊤U ) · PU [ 𝑗]⊤��
=

∑︁
𝑢ℓ ∈U

PU [𝑖, ℓ] ·
∑︁

𝑢ℎ∈U
PU [ 𝑗, ℎ] ·

(
𝚪𝚺

2
𝚪
⊤ − XUX⊤U

)
[ℓ, ℎ]

≤
∑︁

𝑢ℓ ∈U
PU [𝑖, ℓ] ·

∑︁
𝑢ℎ∈U

PU [ 𝑗, ℎ] · 𝜎2𝑑+1

=
∑︁

𝑢ℓ ∈U

√︄
DU [𝑖, 𝑖]
DU [ℓ, ℓ]

· 𝚷[𝑖, ℓ] ·
∑︁

𝑢ℎ∈U

√︄
DU [ 𝑗, 𝑗]
DU [ℎ,ℎ]

· 𝚷[ 𝑗, ℎ] · 𝜎2
𝑑+1

≤
√︁
DU [𝑖, 𝑖] · DU [ 𝑗, 𝑗] ·

𝜎2
𝑑+1

1 − 𝛼 ,
which finishes the proof. □
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